Evaluator

Search documents
AlphaEvolve:陶哲轩背书的知识发现 Agent,AI 正进入自我进化范式
海外独角兽· 2025-07-18 11:13
Core Insights - AlphaEvolve represents a significant advancement in AI, enabling continuous exploration and optimization to uncover valuable discoveries in complex problems [4][54] - The key to AlphaEvolve's success lies in the development of an effective evaluator, which is crucial for AI's self-improvement capabilities [4][55] - The collaboration between AI and human intelligence is essential, with humans defining goals and rules while AI autonomously generates and optimizes solutions [62][63] Group 1: What is AlphaEvolve? - AlphaEvolve is an AI system that combines the creative problem-solving capabilities of the Gemini model with an automated evaluator, allowing it to discover and design new algorithms [10][12] - The core mechanism of AlphaEvolve is based on evolutionary algorithms, which iteratively develop better-performing programs to tackle various challenges [13][25] Group 2: Key Component - Evaluator - The evaluator acts as a quality control mechanism, ensuring that the solutions generated by AlphaEvolve are rigorously tested and validated [43][45] - AlphaEvolve's evaluator allows for the generation of diverse solutions, filtering out ineffective ones while retaining innovative ideas for further optimization [45][46] Group 3: AI Entering Self-Improvement Paradigm - AlphaEvolve has demonstrated a 23% improvement in the efficiency of key computational modules within Google's training infrastructure, marking a shift towards recursive self-improvement in AI [54][55] - The current self-improvement capabilities of AI are primarily focused on efficiency rather than fundamental cognitive breakthroughs, indicating areas for future exploration [55][56] Group 4: Redefining Scientific Discovery Boundaries - AlphaEvolve is primarily focused on mathematics and computer science, but its potential applications extend to other fields like biology and chemistry, provided there are effective evaluation mechanisms [58][59] - The integration of AI in scientific research signifies a shift towards more rational and systematic approaches to knowledge discovery, enhancing the efficiency of the research process [60][61]
Prompt Engineering is Dead — Nir Gazit, Traceloop
AI Engineer· 2025-06-27 09:34
Core Argument - The presentation challenges the notion of "prompt engineering" as a true engineering discipline, suggesting that iterative prompt improvement can be automated [1][2] - The speaker advocates for an alternative approach to prompt optimization, emphasizing the use of evaluators and automated agents [23] Methodology & Implementation - The company developed a chatbot for its website documentation using a Retrieval-Augmented Generation (RAG) pipeline [2] - The RAG pipeline consists of a Chroma database, OpenAI, and prompts to answer questions about the documentation [7] - An evaluator was built to assess the RAG pipeline's responses, using a dataset of questions and expected answers [5][7] - The evaluator uses a ground truth-based LLM as a judge, checking if the generated answers contain specific facts [10][13] - An agent was created to automatically improve prompts by researching online guides, running evaluations, and regenerating prompts based on failure reasons [5][18][19] - The agent uses Crew AI to think, call the evaluator, and regenerate prompts based on best practices [20] Results & Future Considerations - The initial score of the prompt was 0.4 (40%), and after two iterations with the agent, the score improved to 0.9 (90%) [21][22] - The company acknowledges the risk of overfitting to the training data (20 examples) and suggests splitting the data into train/test sets for better generalization [24][25] - Future work may involve applying the same automated optimization techniques to the evaluator and agent prompts [27] - The demo is available in the trace loop/autoprompting demo repository [27]