Workflow
全球聚变竞赛白热化,谁将主导未来能源
Xin Lang Zheng Quan·2025-06-04 10:54

Core Insights - The global competition in fusion energy is accelerating due to the surging demand for AI computing power, positioning zero-carbon fusion energy as a key solution to the energy challenges of the AI era [1][2] Group 1: Global Fusion Energy Landscape - The International Energy Agency's report indicates that global data center electricity consumption will reach 415 terawatt-hours in 2024, accounting for 1.5% of the total global consumption, with a 12% annual growth rate over the past five years, and is expected to double by 2030 [1] - The U.S. and China are leading the investment surge in fusion energy, with U.S. fusion companies attracting over $5.6 billion in equity financing and Chinese companies securing nearly $2.5 billion [2][4] - Helion Energy, a U.S. fusion startup, raised $425 million in Series F funding, achieving a valuation of $5.4 billion, marking a record in the fusion industry [2] Group 2: China's Fusion Energy Development - In China, a collaborative capital structure for fusion innovation has emerged, with significant investments from institutions like the Chinese Academy of Sciences and China National Petroleum Corporation, totaling 14.5 billion yuan for the BEST device, aiming for fusion power demonstration by 2027 [4][5] - New Hope Group, a private enterprise, has invested over 4 billion yuan in fusion research since 2017, achieving significant milestones in plasma current and technology development [4][5] - The Chinese fusion research ecosystem is characterized by a multi-faceted approach, with state-owned enterprises focusing on mainstream technologies while private companies explore commercial prospects [5] Group 3: Technological Innovations and Challenges - The EAST device at the Chinese Academy of Sciences achieved a significant milestone by maintaining a temperature of 100 million degrees Celsius for 1,000 seconds, simulating conditions required for future fusion reactors [5] - New Hope Group's "Xuanlong-50U" device has successfully demonstrated megampere-level hydrogen-boron plasma discharge at 40 million degrees, providing a foundation for future experiments [5][7] - Hydrogen-boron fusion presents commercial advantages due to lower fuel costs and reduced safety equipment investments compared to deuterium-tritium fusion, which involves expensive and challenging fuel preparation [7]