Workflow
新系统可同时在DNA多位点进行修改 基因编辑范围和精度由此扩大
Ke Ji Ri Bao·2025-06-22 23:32

Core Insights - A significant breakthrough in genomics has been achieved by a team from Yale University, enhancing the ability to edit multiple DNA sites within the same cell by twofold while reducing unintended mutations in nearby gene sites [1][2] - The new technology allows for simultaneous modifications across different sections of the DNA, akin to editing multiple chapters in a vast manuscript of 3 billion characters, rather than just individual words on the same page [1] Group 1 - The research team utilized CRISPR-associated protein Cas12, which has a natural ability to handle multiple guide RNAs (gRNAs), to improve editing precision [1] - By optimizing gRNAs, including shortening their length and adjusting RNA base composition, the team significantly increased the number of edits possible within a single cell [1] - The team successfully achieved simultaneous editing of 15 different gene sites in human cells, tripling the previous capabilities of existing systems [1] Group 2 - This breakthrough is expected to aid in the understanding of complex genetic diseases such as cancer and will support the design of synthetic genomes and the development of new therapeutic drugs [2] - The research addresses key obstacles in mammalian genome editing, which is crucial for studying single nucleotide variant-related diseases and constructing synthetic mammalian genomes [2] Group 3 - The advancement lays a solid foundation for the future of precision medicine and synthetic biology [3] - Gene editing technology, often referred to as "molecular scissors," allows scientists to cut and insert specific DNA segments, making it a simple and cost-effective tool in life sciences [3] - Continuous iterations and upgrades in gene editing technology aim to enhance efficiency and precision, transitioning from "molecular scissors" to "molecular scalpels" for more significant applications in precision medicine and modern agriculture [3]