Core Insights - The core technology for humanoid robots is motion control, which is essential for dynamic gait, precise operations, and environmental adaptability [1] - The humanoid robot industry faces both opportunities and challenges, with potential applications in various sectors such as industrial automation, medical rehabilitation, and education [1] - Precise complex motion control technology is fundamental for the widespread application of humanoid robots [2] Industry Overview - Humanoid robots are characterized by human-like form and functions, and their development is driven by advancements in robotics control and AI technology [1] - The industry is experiencing rapid evolution due to continuous influx of capital and talent, although large-scale commercialization still faces technical, economic, and social challenges [1] Motion Control Techniques - Motion control for humanoid robots can be categorized into model-based control and data-driven control, each with unique advantages [3] - Model-based control relies on accurate modeling and manual parameter adjustments, while data-driven control allows robots to learn motion strategies from experience [3] - A hybrid control approach combines both methods to enhance adaptability and robustness, improving the operational capabilities of humanoid robots [3] Key Players and Beneficiaries - Leading companies like Tesla with Optimus, Yushun with G1, and Boston Dynamics with Atlas demonstrate strong motion control capabilities [4] - The development of motion control software algorithms is typically conducted in-house by robot manufacturers, while hardware components may be sourced from third-party suppliers [4] - Training-related hardware such as motion capture devices and simulation software tools are often provided by third-party vendors or open-source platforms [4]
西部证券:运动控制为制约人形机器人商业化落地关键环节 建议关注固高科技(301510.SZ)等