Workflow
WRC 2025聚焦(2):人形机器人临近“CHATGPT时刻” 模型架构成核心突破口

Core Insights - The humanoid robot industry is on the brink of a "ChatGPT moment," with significant breakthroughs expected within 1-2 years driven by policy and demand [1] - The average growth rate for domestic humanoid robot manufacturers and component suppliers is projected to be between 50-100% in the first half of 2025 [1] - The main challenge in the industry is not hardware but the architecture of embodied intelligent AI models, with the VLA model having inherent limitations [1][4] Short-term Outlook (1-2 years) - The domestic market is expected to maintain rapid growth due to policy subsidies and the expansion of application scenarios, with high visibility of orders for complete machines and core components [2] - Key players like Tesla and Figure AI could accelerate global supply chain division and standardization once they achieve mass production [2] Mid-term Outlook (2-5 years) - The integration of end-to-end embodied intelligent models with world models and RL Scaling Law could become the mainstream architecture, facilitating the transition from prototype to large-scale commercialization [2] - Distributed computing is anticipated to become a critical supporting infrastructure, collaborating with 5G/6G and edge computing providers [2] - Investment opportunities include hardware manufacturers entering the mass production phase, AI companies with video generation world model capabilities, and distributed computing centers and edge cloud service providers [2] Long-term Outlook (5+ years) - If end-to-end embodied intelligence and low-latency distributed computing are realized, the market for household and industrial humanoid robots could expand rapidly, potentially reaching annual shipment volumes in the millions [2] - The focus of competition is expected to shift from technological breakthroughs to cost control and ecosystem development [2] Hardware Status - Current humanoid robot hardware can meet most application needs, although optimization is still required in mass production and engineering [3] AI Model Challenges - The VLA model is considered a "foolproof architecture" but struggles with real-world interactions due to insufficient data, and its effectiveness remains limited even after reinforcement learning training [4] - The video generation/world model approach is seen as more promising, allowing for task simulation before real-world application, which may lead to faster convergence [4] RL Scaling Law - Current reinforcement learning training lacks transferability, requiring new tasks to be trained from scratch, which is inefficient [5] - Achieving a scaling law similar to that of language models could significantly accelerate the learning speed of new skills [5] Distributed Computing Trends - Humanoid robots are limited by size and power consumption, with onboard computing equivalent to a few smartphones [6] - Future developments will rely on localized distributed servers to reduce latency, ensure safety, and lower the cost of individual computing units [6]