Core Insights - The Jiangmen Neutrino Experiment (JUNO) has officially commenced operations, marking the first large-scale neutrino experiment of its kind globally, aimed at addressing fundamental questions about the nature of matter and the universe [1][4]. Group 1: Experiment Overview - The JUNO detector is located 700 meters underground in Jiangmen, Guangdong Province, and is capable of detecting neutrinos from nuclear power plants located 53 kilometers away, with unprecedented precision in measuring their energy spectrum [2][4]. - The experiment has achieved key performance indicators that meet or exceed design expectations, enabling it to tackle significant questions in particle physics, such as the mass ordering of neutrinos [4][6]. Group 2: Technical Specifications - The core detector of JUNO has an effective mass of 20,000 tons of liquid scintillator, housed in a stainless steel structure with a diameter of 41.1 meters, and is equipped with numerous photomultiplier tubes to detect scintillation light produced by neutrino interactions [10][11]. - The project has stringent requirements for the purity, transparency, and low radioactivity of the liquid scintillator, all of which have been successfully met [10]. Group 3: International Collaboration - The JUNO project is a major international collaboration involving 700 researchers from 74 institutions across 17 countries and regions, highlighting the importance of global cooperation in advancing scientific research [6][8]. - The success of the JUNO experiment is attributed to effective international collaboration, particularly in pushing the limits of liquid scintillator detection technology [6]. Group 4: Future Prospects - The design lifespan of the JUNO experiment is projected to be 30 years, with potential upgrades to become the world's most sensitive experiment for neutrinoless double beta decay, which could provide insights into the absolute mass of neutrinos and whether they are Majorana particles [4][5]. - The experiment will significantly enhance the precision of three out of six neutrino oscillation parameters and open new avenues for exploring unknown physics, including searches for sterile neutrinos and proton decay [7].
中国江门中微子实验正式运行 将回答物质和宇宙本质问题
Zhong Guo Xin Wen Wang·2025-08-26 00:18