Core Insights - The demand for computing power is increasing across various industries due to the expansion of complex tasks like AI training, while traditional electronic computing architectures face limitations such as the "von Neumann bottleneck" [1] - Optical computing technology, which processes data using light instead of electricity, is emerging as a promising solution, showing rapid development and potential for industrial applications in fields like intelligent computing centers and new material research [1] Advantages of Optical Computing - Light is a fast, low-energy medium with rich information dimensions, making optical computing advantageous over traditional electronic computing [2] - Optical computing supports parallel processing due to multiple physical dimensions of light, making it suitable for high-density tasks like scientific computing and machine learning [2] - Photonic devices generate minimal heat, offering significant energy efficiency [2] - Optical devices have a wider bandwidth and superior performance in processing broadband analog signals compared to electronic devices [2] - The speed of optical devices is exceptional, with nearly no latency, enhancing computational efficiency [2] Different Architectures - Free Space Optics (FSO) is the earliest form of optical computing, utilizing lenses and spatial light modulators to manipulate light in air or vacuum, but faces challenges in durability and reliability [3] - Photonic chips integrate miniature optical components and can be easily incorporated into existing electronic architectures, though scalability for complex tasks remains a challenge [3] - Optical interconnect devices are being developed to enable high-speed data transmission between electronic components, relying on innovations in new materials to reduce signal loss [3] - Fiber optic systems leverage existing fiber communication infrastructure for complex calculations, particularly in optimization problems and AI, but still depend on electronic devices for key functions [4] Technical Bottlenecks - The development of optical computing is at a critical juncture, with a pressing global need for faster, more environmentally friendly computing solutions [5] - Short-term prospects favor all-optical free space systems and hybrid systems that combine light and electricity, with potential in memory-computing architectures [5] - Mid-term innovations may involve new processing architectures that combine spatial and temporal dimensions for enhanced performance and efficiency [6] - Key challenges include precision and stability issues, with ongoing research focused on improving interference resistance through feedback systems and real-time calibration [8] - Optical data storage remains a significant challenge, with potential solutions involving optical cavity-based systems to minimize data loss during processing [8] - Integration and packaging challenges exist, but advancements in 3D packaging technology and new materials may enhance scalability and reduce costs [8]
多架构齐头并进 光计算技术加速迈向商业化
Ke Ji Ri Bao·2025-09-08 00:18