Workflow
自带导航,主动敲门,CRISPR有了新型“快递车”
Ke Ji Ri Bao·2025-09-23 08:52

Core Insights - CRISPR technology represents a revolutionary gene-editing method that offers unprecedented hope for treating genetic disorders, cancer, and rare diseases by precisely modifying disease-causing genes [1] - A significant breakthrough has been achieved by a team from Northwestern University, which has developed a new delivery system for CRISPR tools, enhancing efficiency and safety in gene therapy applications [1][3] Delivery Mechanisms - Current methods for delivering CRISPR into cells primarily rely on modified viruses and lipid nanoparticles (LNPs), each with distinct limitations [2] - Modified viruses are efficient at entering cells but pose safety risks due to immune responses and limited cargo capacity [2] - LNPs are safer but have low delivery efficiency, often getting trapped in cellular compartments, which hinders the effectiveness of gene tools [2] New Delivery System - The new system, termed "Lipid Nanoparticle Spherical Nucleic Acids" (LNP-SNA), features a special DNA shell that enhances visibility and acceptance by cells, significantly improving delivery efficiency [3] - This innovative delivery vehicle has been shown to enter cells over three times more efficiently than traditional lipid particles, with reduced toxicity and a threefold increase in successful gene editing probability [3] - The accuracy of gene repair has improved by over 60%, which is crucial for minimizing health risks associated with erroneous edits [3] Versatility and Future Applications - The LNP-SNA technology is modular, allowing for tailored delivery to specific cell types, such as liver, brain, or cancer cells, enhancing precision in treatment [4] - This new system has demonstrated excellent delivery results across various human cell types, including skin, immune, kidney, and bone marrow stem cells [4] - Seven drugs based on similar spherical nucleic acid technology are currently in human clinical trials, with some targeting cancer treatment [4] - The advancement in delivery mechanisms is critical for the future of gene editing therapies, potentially enabling the treatment of previously untreatable diseases [4]