Core Insights - A breakthrough in regenerative medicine has been achieved by a research team from the University of Zurich, demonstrating the ability to reverse brain damage caused by stroke through stem cell transplantation, promoting neuron regeneration and significantly restoring motor function [1][2][3] Group 1: Research Findings - The study utilized human-induced pluripotent stem cell-derived neural stem cells, which can be reprogrammed from ordinary somatic cells and have the ability to differentiate into various neural system cells [1] - In animal experiments, the team induced permanent brain damage in mice to simulate human stroke, and after one week, they precisely transplanted neural stem cells into the damaged brain area, tracking changes for five weeks using various imaging and biochemical techniques [1][2] - The transplanted stem cells successfully survived in the damaged brain area, with most differentiating into mature neurons that established functional connections with the host's existing neural network, indicating integration into the brain's operational system [2] Group 2: Broader Implications - The research revealed widespread regenerative effects, including the formation of new blood vessels in the damaged area, significant reduction in brain inflammation, and restoration of blood-brain barrier integrity, highlighting how transplanted cells activate the brain's overall "regeneration program" [2] - Collaboration with Kyoto University ensured that all stem cells were prepared without using animal-derived reagents, laying the groundwork for future safe applications in humans [2] - A critical finding was that transplantation performed one week after the stroke yielded better results, providing a valuable preparation window for clinical treatment [2][3] Group 3: Future Directions - The research opens new clinical prospects by achieving biological repair of structural brain damage rather than merely alleviating symptoms, potentially offering a treatment paradigm for other neurodegenerative diseases such as Parkinson's or spinal cord injuries [3] - The identified "one-week delayed transplantation" window enhances clinical feasibility, marking a significant step towards real-world application of the technology [3] - The team is working on developing a "safety switch" system to minimize potential risks and optimize the technology for human application, allowing for the termination of stem cell proliferation if necessary [2]
干细胞移植逆转动物中风损伤
Ke Ji Ri Bao·2025-09-26 01:11