Workflow
AI驱动量化投资进入2.0时代
Zhong Guo Zheng Quan Bao·2025-09-28 20:46

Core Insights - The article discusses the advancements in AI-driven quantitative investment strategies led by David Wright at Swiss Bank Asset Management, highlighting the transition to a 2.0 era of quantitative investing through enhanced computational power and open-source tools [1][2]. Group 1: AI Quantitative Strategies - AI quantitative models can identify hundreds of high-frequency signals and uncover non-linear relationships in data, surpassing traditional quantitative methods that rely on a limited number of factors [1][5]. - The AI quantitative strategy team at Swiss Bank Asset Management manages $25 billion, with plans to expand into emerging markets, including A-shares in China [2][3]. - The interest of global capital in the Chinese market is on the rise, with potential AI quantitative strategies targeting A-shares expected to launch next year [2][3]. Group 2: Market Adaptation and Performance - AI models have shown that the signal relationships identified can be generalized across countries, indicating that these models can be adapted to the Chinese market [3][4]. - Emerging markets may offer higher potential excess returns compared to developed markets, although trading costs are also higher, leading to similar overall excess returns relative to benchmarks [3][4]. - The integration of fundamental signals alongside emotional and price signals in emerging markets has been found to enhance model performance [3][4]. Group 3: Differentiation and Risk Management - Swiss Bank Asset Management's AI quantitative strategy focuses on a holding period of approximately 20 days, contrasting with many competitors that prefer shorter holding periods [5][6]. - The firm emphasizes the use of traditional data for model training, covering longer historical periods, and maintaining factor neutrality across various investment styles [5][6]. - To mitigate overfitting risks, the company employs economically sound signals, integrates numerous simple models for training, and utilizes a cross-validation method with 15 years of data [6]. Group 4: Evolving Role of Fund Managers - The role of fund managers is evolving with the rise of AI in quantitative investing, shifting from model building to training AI models and validating outputs [6]. - Fund managers will continue to conduct factor research and oversee investment portfolio construction, maintaining the same number of personnel despite changes in responsibilities [6].