Core Insights - The demand for computing power in the AI sector is experiencing explosive growth, with China's intelligent computing power exceeding tens of quadrillions of operations per second by 2025, and AI computing power doubling approximately every six months, significantly outpacing the hardware advancements driven by Moore's Law [2][4]. Industry Overview - The current landscape of computing chips shows a stark contrast between storage and computing chips, where storage chips have standardized interfaces while computing chips rely on a complete ecosystem of instruction sets, toolchains, and operating systems [2]. - The U.S. has long dominated the computing chip system, while China faces dual hardware constraints: the slowing of Moore's Law and the challenges posed by the ban on EUV lithography machines [2][4]. Technological Breakthroughs - The team led by Tang Jianshi has broken down chip computing power into three core elements: transistor integration density, chip area, and individual transistor computing power, and is exploring technologies to enhance each element [4][6]. - To achieve the goal of integrating over one trillion transistors, the team is focusing on chiplet technology, which allows for vertical stacking of multiple chips, expanding integration dimensions from "area density" to "volume density" [6][9]. Innovations in Memristor Technology - The team has made significant advancements in memristor technology, which features a simple structure that allows for multi-bit non-volatile storage and can perform matrix-vector multiplication, enhancing energy efficiency compared to traditional digital circuits [9][10]. - The integration of memristors with CMOS technology has reached a scale of over 100 million, with yield rates between 99.44% to 99.9999%, and products at 40nm and 28nm nodes have achieved mass production [10][12]. Industry Collaboration and Development - The team has established the "Beijing Chip Power Technology Innovation Center" to create a one-stop service platform for chiplet technology, which has already completed initial wiring and is capable of small-scale production [6][10]. - The team has incubated a startup, "Beijing Billion Technology," which has launched a hardware platform for computing and storage integration and is collaborating with various universities and companies like Migu and ByteDance to develop computing acceleration cards for content recommendation applications [15]. Future Directions - The team emphasizes the need for multi-level collaborative innovation to overcome the constraints of advanced manufacturing processes and achieve breakthroughs in high-performance chips [15]. - Future explorations will include integrating silicon photonics and optoelectronics to enhance data transmission and expand the technological pathways for efficient chip development [15].
清华大学集成电路学院副院长唐建石:高算力芯片,如何突破瓶颈?
Xin Lang Cai Jing·2025-10-03 07:16