Workflow
【科技日报】“补钙”后的聚合物半导体材料大幅提升光解水制氢效率
Ke Ji Ri Bao·2025-10-11 01:41

Core Insights - Recent advancements in solar energy technology have been made by researchers at the Chinese Academy of Sciences, focusing on the efficient decomposition of water to produce hydrogen using a polymer semiconductor material known as Polytriazine Imide (PTI) [3][4] - The study highlights a novel approach called "lattice engineering," which optimizes the growth process of PTI by introducing calcium, significantly enhancing its efficiency in hydrogen production [4] Group 1: Research Findings - The introduction of calcium into PTI's structure has led to a substantial reduction in the binding energy between electrons and holes, decreasing from 48.2 meV to 15.4 meV, allowing for the automatic dissociation of excitons [4] - The new calcium-doped PTI material exhibits an initial activity in photolytic water splitting that is 3.4 times higher than the original material [4] Group 2: Material Characteristics - PTI is characterized by its low cost, environmental friendliness, and suitability for photocatalysis, making it a promising candidate for large-scale solar hydrogen production [3] - The structural modifications made through lattice engineering enable the separation of hydrogen and oxygen production processes, minimizing interference and side reactions [4]