Workflow
七大“深度科技”将引领全球农业变革
Ke Ji Ri Bao·2025-11-13 01:00

Core Insights - The global agriculture sector is at a critical juncture, facing unprecedented pressures from climate change, resource degradation, demographic shifts, and geopolitical instability, necessitating a systemic transformation led by "deep technology" [1] - Deep technology, which encompasses advanced scientific and engineering innovations, is expected to revolutionize the agricultural industry and address significant global challenges over the next decade [1] Group 1: Deep Technology in Agriculture - Deep technologies such as Generative AI, computer vision, edge IoT, satellite remote sensing, robotics, CRISPR gene editing, and nanotechnology are identified as key drivers for transforming global agriculture into a more resilient, sustainable, and efficient system [1] - The World Economic Forum's "AI in Agriculture Innovation Initiative" released a report highlighting the potential of these technologies to reshape agricultural practices [1] Group 2: Generative AI - Generative AI is leveraging advancements in large language models and the increasing availability of agricultural data, providing personalized crop management advice and localized farming plans [2] - Applications include acting as an "AI advisor" for farmers, assisting governments in macro crop planning, and accelerating the development of new crop varieties through gene editing [2] - The lack of high-quality training data, particularly for localized scenarios, remains a significant barrier to the widespread adoption of Generative AI in agriculture [2] Group 3: Computer Vision - Computer vision enables machines to interpret images and videos, generating decision-making suggestions and reducing reliance on human analysis [3] - In agriculture, it is used for precise identification of crop diseases, weeds, and pests, as well as real-time monitoring of crop growth [3] - The variability of field conditions and plant growth stages poses challenges for the large-scale application of computer vision technology in agriculture [3] Group 4: Edge IoT - Edge IoT processes data at the device level or nearby network edge, allowing for low-latency real-time responses and accelerating autonomous decision-making [4] - It is particularly beneficial in rural areas with weak network coverage, facilitating applications such as automated irrigation and early disease warning systems [4] - High equipment costs and interoperability issues between different edge systems are current challenges in this field [4] Group 5: Satellite Remote Sensing - Satellite remote sensing technology is increasingly applied in agriculture due to improved spatial and spectral resolution and higher data collection frequency [6] - It allows for efficient monitoring of large geographic areas at a low cost, assessing crop health and predicting pest outbreaks [6] - The precision of satellite remote sensing needs improvement when dealing with small-scale, dispersed farmland or multi-crop rotations [7] Group 6: Robotics - Robotics technology automates labor-intensive or complex tasks in agriculture, integrating perception and decision-making capabilities [8] - With advancements in AI perception and cloud-edge collaboration, agricultural robots can perform tasks such as precision planting and automated harvesting [8] - High costs of these technologies present challenges for adoption in countries with abundant low-wage labor [9] Group 7: CRISPR Technology - CRISPR gene editing is a key force in agricultural development, allowing precise modifications to DNA to enhance desirable traits in crops [10] - It aims to accelerate the breeding of crops that are drought-resistant, pest-resistant, and nutritionally enhanced [10] - Regulatory hurdles and public acceptance issues are significant challenges to the commercialization of CRISPR technology [11] Group 8: Nanotechnology - Nanotechnology shows potential in agriculture for pest control, nutrient management, and controlled release of agricultural inputs [12] - The lack of long-term data on environmental and health impacts poses challenges for the widespread application of nanotechnology [12] - The report suggests that governments and institutions should support promising agricultural deep tech projects through policy coordination, funding, talent development, and infrastructure building [12]