Core Insights - The core focus of the article is on the strategies for pre-training AI models, specifically emphasizing Token Efficiency and Long Context as critical components for enhancing performance in complex tasks [2][6]. Group 1: Token Efficiency - Token Efficiency is crucial because the reasoning or training of agents is fundamentally a search process, where better pre-training reduces the search space and enhances prior knowledge [3][7]. - The importance of Token Efficiency is highlighted by the need for AI to develop complex systems, such as an operating system, without enumerating every possible token combination, which may be meaningless or incorrect [7]. Group 2: Long Context - The architecture of Transformers shows significant advantages in long context scenarios, with experiments indicating that performance drops below LSTM when context length exceeds 1000 tokens, underscoring the importance of context length in model design [2][6]. - In the current Agentic era, many tasks require long contexts to execute complex instructions, making architectures with lower positional loss more technically capable [2][6]. Group 3: Aesthetic Considerations in AI - The development of AI models is not just a technical challenge but also involves aesthetic considerations, where the creation of a model reflects a worldview and values, akin to the concept of "Taste" as articulated by influential figures like Steve Jobs [3][7]. - Each model generates unique tokens that are not interchangeable, indicating that intelligence produced by different roles (e.g., a CEO vs. a designer) varies significantly, leading to an exponential increase in the space of possible "Tastes" [4][8].
杨植麟揭秘Kimi预训练策略:提升Token efficiency,实现长文本
Xin Lang Cai Jing·2026-01-10 12:09