Core Insights - The development of AI capabilities is transitioning from foundational large models to intelligent agents, focusing more on providing specific functions to build workflows [3][7] - Embodied intelligence, as a significant form of physical AI, integrates digital intelligence into physical devices for interaction with the real world, primarily emphasizing reasoning applications [3][7] Group 1: AI Capability Development - AI capability is evolving towards intelligent agents that emphasize specific functionalities for workflow construction [3][7] - Industry analysts predict a shift in AI computing power demand from training to inference, which will consume a corresponding proportion of computational resources [3][7] Group 2: Heterogeneous Computing Infrastructure - The need for heterogeneous infrastructure arises from the requirement for multi-agent systems to build complete workflows and operate multiple streams in parallel [3][7] - AI agents require support from various models, schedulers, and preprocessing modules, necessitating different hardware to provide optimal energy efficiency and cost-effectiveness [3][7] - A flexible heterogeneous support capability is needed at three levels: an open AI software stack at the top, infrastructure adaptable to small and medium enterprises in the middle, and a diverse hardware integration at the bottom [3][7] Group 3: Embodied Intelligence Robotics - In the field of embodied intelligent robotics, various methods for achieving intelligent tasks are being explored, with no optimal solution currently established [4][8] - Traditional industrial automation focuses on reliability, real-time performance, and computational accuracy, while large language model-based approaches lean towards neural network solutions requiring differentiated computing architectures [4][8] - The era of embodied intelligent robots is anticipated to bring challenges in computing power and energy consumption, with heterogeneous computing becoming the core architecture of AI infrastructure [4][8] Group 4: Multi-Agent Systems - The future of robotics, when scaled to millions, is expected to transcend industrial limitations and support widespread commercial and personalized applications, necessitating multi-agent systems [4][9] - The technical stack for multi-agent systems operating on physical AI devices faces numerous challenges, with heterogeneous computing being a key pathway to address system reliability issues [4][9]
英特尔副总裁宋继强:智能体AI带来算力挑战,异构计算将成为构建AI基础设施的重要方向