量子驱动的蛋白质成功制备
Ke Ji Ri Bao·2026-01-21 23:10

Core Insights - Quantum biology has entered a new phase of practical application through the artificial design of quantum-driven proteins, specifically magnetic-sensitive fluorescent proteins (MFPs) that interact with magnetic fields and radio waves [1][2] - This research marks the first time that quantum effects have been transformed into a series of new technologies with practical value, moving from mere observation of natural quantum phenomena to actively utilizing and modifying these phenomena for real-world applications [1][2] Group 1 - The research team developed a prototype imaging device that utilizes principles similar to magnetic resonance imaging (MRI) to locate artificially modified proteins in vivo, enabling tracking of specific molecular or gene expression changes within biological systems [1] - This capability is significant for addressing medical challenges such as targeted drug delivery and tracking genetic changes within tumors [1] Group 2 - The creation of these proteins involved a bioengineering method called "directed evolution," which introduced random mutations into the DNA sequence encoding the protein, generating thousands of variants from which the best-performing mutants were selected through multiple rounds of screening and evolution [1] - The sensitivity of the resulting proteins to magnetic fields was significantly enhanced through this iterative process [1] Group 3 - The breakthrough relies on the deep integration of engineering biology, quantum physics, and artificial intelligence, showcasing the unpredictable path from scientific discovery to technological advancement [2] - The understanding of the quantum processes within the magnetic-sensitive fluorescent proteins is built upon years of research into the geomagnetic navigation mechanisms of birds, highlighting the importance of interdisciplinary collaboration [2] Group 4 - The development of this technology is likened to equipping biological research with a "quantum radar," allowing scientists to actively direct a transformation rather than merely observing natural phenomena [3] - This innovation could enable doctors to visualize genetic changes within tumors in real-time, akin to weather forecasting, thereby allowing for precise targeting of drug therapies [3] - The research exemplifies how breakthroughs often emerge from cross-disciplinary collaboration, bridging fields such as avian navigation, protein modification, quantum physics, and AI [3]

量子驱动的蛋白质成功制备 - Reportify