Core Problem & Solution - Current LLM techniques struggle to maintain focus on crucial rules and context in long conversations, leading to hallucinations and inconsistent behavior [1][2][5] - Attentive Reasoning Queries (ARQs) solve this by guiding LLMs with explicit, domain-specific questions encoded as targeted queries inside a JSON schema [3][4] - ARQs reinstate critical instructions and facilitate auditable, verifiable intermediate reasoning steps [4][6] - ARQs outperform Chain-of-Thought (CoT) reasoning and direct response generation, achieving a 90.2% success rate across 87 test scenarios [6][8] Implementation & Application - ARQs are implemented in Parlant, an open-source framework [6] - ARQs are integrated into modules like guideline proposer, tool caller, and message generator [8] - Making reasoning explicit, measurable, and domain-aware helps LLMs reason with intention, especially in high-stakes or multi-turn scenarios [7]
X @Avi Chawla
Avi Chawlaยท2025-10-21 19:56