一堂「强化学习」大师课 | 42章经
42章经·2025-04-13 12:01
曲凯: 今天我们请来了国内强化学习 (RL) 领域的专家吴翼,吴翼目前是清华大学交叉信息研究院助理教授,他曾经在 OpenAI 工作过,算是国内最早研究强化学 习的人之一,我们今天就争取一起把 RL 这个话题给大家聊透。 首先吴翼能不能简单解释一下,到底什么是 RL? 因此,RL 其实更通用一些,它的逻辑和我们在真实生活中解决问题的逻辑非常接近。比如我要去美国出差,只要最后能顺利往返,中间怎么去机场、选什么航 司、具体坐哪个航班都是开放的。 但 RL 很不一样。 RL 最早是用来打游戏的,而游戏的特点和分类问题有两大区别。 第一,游戏过程中有非常多的动作和决策。比如我们玩一个打乒乓球的游戏,发球、接球、回球,每一个动作都是非标的,而且不同的选择会直接影响最终的结 果。 第二,赢得一场游戏的方式可能有上万种,并没有唯一的标准答案。 所以 RL 是一套用于解决多步决策问题的算法框架。它要解决的问题没有标准答案,每一步的具体决策也不受约束,但当完成所有决策后,会有一个反馈机制来评 判它最终做得好还是不好。 吴翼: RL 是机器学习这个大概念下一类比较特殊的问题。 传统机器学习的本质是记住大量标注过正确答案的数据对。 ...