Workflow
舍弃自回归!国内团队打造纯扩散多模态大模型LLaDA-V,理解任务新SOTA
机器之心·2025-05-27 03:23

Core Viewpoint - The article discusses the development of LLaDA-V, a pure diffusion multimodal large language model (MLLM) that integrates visual instruction tuning, marking a significant breakthrough in multimodal understanding compared to traditional autoregressive methods [1][16]. Group 1: Model Development - The research team expanded LLaDA into the multimodal domain, introducing LLaDA-V, which utilizes a visual encoder (SigLIP 2) and an MLP connector to project visual features into the language embedding space, achieving effective multimodal alignment [2]. - LLaDA-V employs a discrete diffusion mechanism during both training and sampling phases, moving away from the autoregressive paradigm [2]. Group 2: Performance Highlights - LLaDA-V demonstrates strong data scalability and competitive performance, outperforming the autoregressive baseline LLaMA3-V in 11 multimodal tasks, despite LLaDA-8B being slightly inferior to LLaMA3-8B in pure text tasks [5]. - The model achieves state-of-the-art (SOTA) performance in multimodal understanding tasks compared to existing mixed autoregressive-diffusion models, validating the effectiveness of the MLLM architecture based on powerful language diffusion models [8]. - LLaDA-V significantly narrows the performance gap with top autoregressive MLLMs, achieving comparable results in benchmarks like MMStar [10]. Group 3: Core Methodology - The core of LLaDA-V lies in combining visual instruction tuning with LLaDA's masking diffusion mechanism, allowing for a robust training and inference process [13][15]. - The architecture consists of a classic "visual encoder + MLP projector + language model" setup, where the visual encoder extracts image features, and the MLP projector maps them to LLaDA's embedding space [15]. - LLaDA-V's training objective supports multi-turn multimodal dialogue by masking only the model's responses during training, optimizing the model's ability to generate coherent replies [15]. Group 4: Future Outlook - The successful integration of visual instruction tuning with masking diffusion models opens a new technical pathway for MLLM development, challenging the notion that multimodal intelligence must rely on autoregressive models [16]. - The ongoing advancement of language diffusion models is expected to play a more significant role in the future, further pushing the boundaries of multimodal AI [16].