Workflow
LLM加RL遭质疑:故意用错奖励,数学基准也显著提升,AI圈炸了
机器之心·2025-05-28 08:09

Core Insights - The article discusses a recent paper that challenges the effectiveness of reinforcement learning (RL) in training large language models (LLMs), particularly in the context of using false rewards to enhance performance [3][4][5]. Group 1: Findings on Reinforcement Learning - The study reveals that using false rewards, including random and incorrect rewards, can significantly improve the performance of the Qwen2.5-Math-7B model on the MATH-500 benchmark, with random rewards improving scores by 21% and incorrect rewards by 25% compared to a 28.8% improvement with true rewards [5][10]. - The research questions the traditional belief that high-quality supervision signals are essential for effective RL training, suggesting that even minimal or misleading signals can yield substantial improvements [7][19]. Group 2: Model-Specific Observations - The effectiveness of RL with false rewards appears to be model-dependent, as other models like Llama3 and OLMo2 did not show similar performance gains when subjected to false rewards [16][17]. - The Qwen model demonstrated a unique ability to leverage code generation for mathematical reasoning, achieving a code generation frequency of 65% prior to RL training, which increased to over 90% post-training [28][34]. Group 3: Implications for Future Research - The findings indicate that future RL research should explore the applicability of these methods across diverse model families, rather than relying solely on a single model's performance [25][49]. - Understanding the pre-existing reasoning patterns learned during pre-training is crucial for designing effective RL training strategies, as these patterns significantly influence downstream performance [50].