ICML 2025 Spotlight | 谁导致了多智能体系统的失败?首个「自动化失败归因」研究出炉
机器之心·2025-05-30 03:28
问题来了:到底是哪个 Agent 出了错?又是在对话流程的哪一环节?调试这样的多智能体系统如同大海捞针,需要翻阅大量复杂日志,极其耗时。 这并非虚构。在多智能体 LLM 系统中,失败常见但难以诊断。随着这类系统愈加普及,我们急需新方法快速定位错误。正因如此,ICML 2025 的一篇 Spotlight 论 文提出了「自动化失败归因(Automated Failure Attribution)」的新研究方向,目标是让 AI 自动回答:是谁、在哪一步导致了失败。 该工作由 Penn State、Duke、UW、Goolge DeepMind 等机构的多位研究人员合作完成。 论文标题:Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems 背景挑战 LLM 驱动的多智能体系统在诸多领域展现出巨大潜力,从自动化助手协同办公到多 Agent 合作完成 Web 复杂操作等。然而,这些系统 脆弱性 也逐渐显现:多个 Agent 之间的误解、信息传递错误或决策不当,都可能导致 ...