Workflow
SFT在帮倒忙?新研究:直接进行强化学习,模型多模态推理上限更高
机器之心·2025-06-01 03:30

Core Insights - The article discusses the limitations of the "Supervised Fine-Tuning (SFT) + Reinforcement Learning (RL)" paradigm in developing large vision-language models (LVLM), suggesting that SFT may hinder learning and lead to superficial reasoning paths, while RL promotes genuine multimodal reasoning [3][11][21]. Group 1: Research Findings - A study from the University of California, Santa Cruz, and the University of Texas at Dallas reveals that SFT can obstruct learning, often resulting in "pseudo-reasoning paths" that lack depth [3][11]. - The research team created the VLAA-Thinking dataset to systematically investigate the roles of SFT and RL in multimodal reasoning, highlighting the unique contributions of each method [4][8]. - The findings indicate that while SFT improves performance on standard tasks, it falls short in enhancing complex reasoning capabilities, leading to a 47% relative performance decline in a 7B model [11][13]. Group 2: Data and Methodology - The VLAA-Thinking dataset comprises 203,182 samples, with 126,413 for SFT and 25,195 for RL, designed to facilitate high-quality reasoning chains [5][6]. - The research employed a six-stage data processing workflow to effectively transfer reasoning capabilities from pure text models to LVLMs [6][8]. - A mixed reward function was innovatively designed within the GRPO framework to optimize RL in visual contexts, incorporating various reward types for different problem categories [8][19]. Group 3: Performance Analysis - The study found that SFT's imitative reasoning patterns can limit the exploration space during the RL phase, suggesting that direct learning from reward signals is more effective [15][26]. - Models trained solely with GRPO outperformed those that underwent SFT, with the VLAA-Thinker-Qwen2.5-VL-3B model ranking first in the Open LMM reasoning leaderboard for 4B models, achieving a 1.8% record improvement [15][31]. - The analysis revealed that response length and reward scores do not correlate significantly with performance, challenging previous assumptions about their relationship [24][26]. Group 4: Implications for Future Research - The findings suggest that SFT is currently incompatible with GRPO in the context of multimodal reasoning, potentially damaging the performance of both foundational and instruction-tuned LVLMs [21][22]. - The research emphasizes the need for high-quality instruction tuning to enhance model performance in RL settings, indicating that better instruction tuning leads to improved reasoning capabilities post-RL training [31].