Workflow
华为昇腾万卡集群揭秘:如何驯服AI算力「巨兽」?
机器之心·2025-06-09 04:33

Core Viewpoint - The article discusses the advancements in AI computing power clusters, highlighting their critical role in supporting large-scale AI models and ensuring high availability, fault tolerance, and efficient resource management [2][4][39]. Group 1: High Availability of Super Nodes - AI training and inference require continuous operation, similar to an emergency system in hospitals, where each computer in the cluster has a backup to take over in case of failure, ensuring uninterrupted tasks [6][5]. - Huawei's CloudMatrix 384 super node employs a fault tolerance scheme that includes system-level, business-level, and operational-level fault tolerance, transforming faults into manageable issues [7][8]. Group 2: Cluster Linearity - The ideal scenario for computing power clusters is linear scalability, where the total power of 100 computers should be 100 times that of one, achieved through precise task allocation algorithms [10]. - Huawei's team has developed key technologies to enhance training linearity for large models, achieving linearity rates of 96% for the Pangu Ultra 135B model with 4K cards [11][13]. Group 3: Rapid Recovery in Large-Scale Training - When training with thousands of computing units, the system can automatically save progress, allowing for quick recovery from faults without starting over, significantly reducing downtime [14][15]. - Innovations such as process-level rescheduling and online recovery techniques have been introduced to minimize recovery times to under 3 minutes and even 30 seconds for specific faults [16][20]. Group 4: Fault Management and Diagnosis - A real-time monitoring system continuously checks the health of each computer in the cluster, enabling quick identification and resolution of issues before they escalate [24][26]. - Huawei has developed a comprehensive fault management framework that includes capabilities for error detection, isolation, and recovery, enhancing the reliability of the computing infrastructure [24][28]. Group 5: Simulation and Modeling - Before deploying complex AI models, the computing cluster can simulate scenarios in a virtual environment to identify potential bottlenecks and optimize resource allocation [29][30]. - The introduction of a Markov modeling simulation platform allows for multi-dimensional analysis and performance prediction, improving resource efficiency and system stability [30][31]. Group 6: Framework Migration - Huawei's MindSpore framework has rapidly evolved since its open-source launch, providing tools for seamless migration from other frameworks and enhancing performance during training and inference [37][38]. - The framework supports a wide range of applications, enabling quick deployment of large models and improving inference capabilities [38][39].