Core Viewpoint - The article discusses the evolving landscape of large models in autonomous driving, highlighting the focus on lightweight solutions, hardware adaptation, knowledge distillation, and advanced reasoning paradigms like CoT and VLA+ reinforcement learning as key areas for future development [1][2]. Group 1: Course Introduction - The course aims to explore cutting-edge optimization methods for large models, focusing on parameter-efficient computation, dynamic knowledge expansion, and complex reasoning [2]. - It addresses the core challenges in model optimization, including pruning, quantization, retrieval-augmented generation (RAG), and advanced reasoning paradigms [3]. Group 2: Problems Addressed by the Course - The course provides a systematic understanding of large model knowledge, helping students build a coherent theoretical framework [3]. - It assists students in combining theoretical knowledge with practical coding skills, enabling them to replicate research papers and develop new models [3]. - The course offers guidance on writing and submitting academic papers, addressing common challenges faced by students [3]. Group 3: Enrollment Information - The course limits enrollment to 6-8 students per session [4]. - It targets individuals with a background in deep learning or machine learning, familiarity with Python, and a passion for research [6]. Group 4: Course Outcomes - Participants will gain insights into classic and cutting-edge papers in the field, enhancing their understanding of key algorithms and principles [9]. - The course includes a structured approach to writing and revising academic papers, culminating in the production of a draft [9]. Group 5: Course Structure - The course spans 12 weeks of online group research followed by 2 weeks of paper guidance and a 10-week maintenance period [9]. - It covers various topics, including model pruning, quantization, and advanced reasoning techniques, with a focus on practical applications [19].
还在纠结是否入门大模型?别人已经发了第一篇顶会!
自动驾驶之心·2025-07-14 06:20