Core Viewpoint - End-to-end (E2E) autonomous driving is currently the core algorithm for mass production in intelligent driving, with significant advancements in the VLA (Vision-Language Architecture) and VLM (Vision-Language Model) systems, leading to high demand for related positions in the industry [2][4]. Summary by Sections Section 1: Background Knowledge - The course aims to provide a comprehensive understanding of end-to-end autonomous driving, including its historical development and the transition from modular to end-to-end approaches [21]. - Key technical stacks such as VLA, diffusion models, and reinforcement learning are essential for understanding the current landscape of autonomous driving technology [22]. Section 2: Job Market Insights - Positions related to VLA/VLM algorithms offer lucrative salaries, with 3-5 years of experience earning between 40K to 70K monthly, and top talents in the field can earn up to 1 million annually [10]. - The demand for VLA-related roles is increasing, indicating a shift in the industry towards advanced model architectures [9]. Section 3: Course Structure - The course is structured into five chapters, covering topics from basic concepts of end-to-end algorithms to advanced applications in VLA and reinforcement learning [19][30]. - Practical components are included to bridge the gap between theory and application, ensuring participants can implement learned concepts in real-world scenarios [18]. Section 4: Technical Innovations - Various approaches within end-to-end frameworks are explored, including two-stage and one-stage methods, with notable models like PLUTO and UniAD leading the way [4][23]. - The introduction of diffusion models has revolutionized trajectory prediction, allowing for better adaptability in uncertain driving environments [24]. Section 5: Learning Outcomes - Participants are expected to achieve a level of proficiency equivalent to one year of experience as an end-to-end autonomous driving algorithm engineer, mastering key technologies and frameworks [32]. - The course emphasizes the importance of understanding BEV perception, multimodal models, and reinforcement learning to stay competitive in the evolving job market [32].
70K?端到端VLA现在这么吃香!?
自动驾驶之心·2025-07-21 11:18