Workflow
从2025意大利国际近红外光谱学术会议看技术发展新趋势
仪器信息网·2025-07-22 03:24

Core Viewpoint - The article discusses the advancements in Near Infrared Spectroscopy (NIRS) technology, highlighting innovations in hardware, data processing methods, and diverse applications across various industries, indicating a trend towards more intelligent and accessible analytical tools for precision agriculture, green industry, and personalized medicine [1]. Group 1: Innovations in Hardware and Portable Applications - The development of miniaturized, intelligent, and cost-effective NIRS devices has expanded field detection applications, with a focus on balancing portability and performance [3][4]. - Notable examples include a handheld NIRS device developed by an Australian company that integrates MEMS/InGaAs sensor modules, significantly reducing costs while maintaining sensitivity and resolution [3]. - Practical applications of portable devices include food safety assessments, drug testing, and quality control in coffee production, demonstrating their effectiveness in real-world scenarios [5]. Group 2: Integration with Cloud Computing and IoT - The integration of portable NIRS with RFID, blockchain, and IoT has enabled the creation of comprehensive traceability systems, enhancing the digital supply chain [6]. - A New Zealand company successfully replaced 40 online and offline spectrometers with a standardized NIR network, ensuring data consistency throughout the production chain [6]. Group 3: Development of Specialized Spectrometers - Innovations in specialized spectrometers, such as the MiniSmartSensor developed by SINTEF in Norway, allow for precise subsurface detection in food quality analysis [7]. Group 4: Advances in Data Processing and Model Building - The conference highlighted the shift from traditional PLS regression to more adaptive modeling strategies, improving robustness and interpretability in complex sample analysis [9]. - New methodologies, such as the "first principles" approach and data augmentation techniques, have been introduced to enhance model performance and address small sample calibration challenges [9][10]. Group 5: Expansion of Application Scenarios - NIRS technology is increasingly applied across diverse fields, including bioenergy optimization, agricultural quality assessment, and industrial applications, showcasing its cross-industry penetration [18][19]. - Noteworthy applications include real-time monitoring of biogas production and non-destructive quality assessment of organic oranges, demonstrating the versatility of NIRS [18]. Group 6: Automation and Intelligent Applications - The introduction of automation technologies has significantly improved the efficiency of NIRS applications, transitioning from laboratory settings to field and industrial environments [21]. - Examples include collaborative robots for automated wood sample processing and drone systems for real-time vineyard monitoring [23][24]. Group 7: Environmental and Medical Innovations - NIRS technology is favored in environmental monitoring and healthcare due to its green characteristics, enabling efficient detection of microplastics and real-time dialysis monitoring [28][29]. Group 8: Multimodal Data Fusion and Future Prospects - The integration of multimodal data fusion is a key development direction for NIRS, enhancing model accuracy and applicability [36]. - Future advancements are expected to focus on smaller, smarter sensors, the fusion of physical models with data-driven approaches, and the expansion of NIRS applications into complex scenarios [41][42].