Workflow
行车报漏检了,锅丢给了自动标注。。。
自动驾驶之心·2025-07-22 07:28

Core Viewpoint - The article discusses the challenges and methodologies in automating the labeling of training data for occupancy networks (OCC) in autonomous driving, emphasizing the need for high-quality data to improve model generalization and safety [2][10]. Group 1: OCC and Its Importance - The occupancy network aims to partition space into small grids to predict occupancy, addressing irregular obstacles like fallen trees and other background elements [3][4]. - Since Tesla's announcement of OCC in 2022, it has become a standard in pure vision autonomous driving solutions, leading to a high demand for training data labeling [2][4]. Group 2: Challenges in Automated Labeling - The main challenges in 4D automated labeling include: 1. High temporal and spatial consistency requirements for tracking dynamic objects across frames [9]. 2. Complexity in fusing multi-modal data from various sensors [9]. 3. Difficulty in generalizing to dynamic scenes due to unpredictable behaviors of traffic participants [9]. 4. The contradiction between labeling efficiency and cost, as high precision requires manual verification [9]. 5. High requirements for generalization in production scenarios, necessitating data extraction from diverse environments [9]. Group 3: Training Data Generation Process - The common process for generating OCC training ground truth involves: 1. Ensuring consistency between 2D and 3D object detection [8]. 2. Comparing with edge models [8]. 3. Involving manual labeling for quality control [8]. Group 4: Course Offerings - The article promotes a course on 4D automated labeling, covering the entire process and core algorithms, aimed at learners interested in the autonomous driving data loop [10][26]. - The course includes practical exercises and addresses real-world challenges in the field, enhancing algorithmic capabilities [10][26]. Group 5: Course Structure - The course is structured into several chapters, including: 1. Basics of 4D automated labeling [11]. 2. Dynamic obstacle labeling [13]. 3. Laser and visual SLAM reconstruction [14]. 4. Static element labeling based on reconstruction [16]. 5. General obstacle OCC labeling [18]. 6. End-to-end ground truth labeling [19]. 7. Data loop topics, addressing industry pain points and interview preparation [21].