Core Insights - The article discusses the advancements in end-to-end autonomous driving algorithms, highlighting the emergence of various models and approaches in recent years, such as PLUTO, UniAD, OccWorld, and DiffusionDrive, which represent different technical directions in the field [1] - It emphasizes the shift in academic focus towards large models and Vision-Language-Action (VLA) methodologies, suggesting that traditional perception and planning tasks are becoming less prominent in top conferences [1] - The article encourages researchers to align their work with large models and VLA, indicating that there are still many subfields to explore despite the challenges for beginners [1] Summary by Sections Section 1: VLA Research Topics - The article introduces VLA research topics aimed at helping students systematically grasp key theoretical knowledge and expand their understanding of the specified direction [6] - It addresses the need for students to combine theoretical models with practical coding skills to develop new models and enhance their research capabilities [6] Section 2: Enrollment Information - The program has a limited enrollment capacity of 6 to 8 students per session [5] - It targets students at various academic levels (bachelor's, master's, and doctoral) who are interested in enhancing their research skills in autonomous driving and AI [7] Section 3: Course Outcomes - Participants will analyze classic and cutting-edge papers, understand key algorithms, and learn about writing and submission methods for academic papers [8][10] - The course includes a structured timeline of 12 weeks of online group research, followed by 2 weeks of paper guidance and a 10-week maintenance period [10] Section 4: Course Highlights - The program features a "2+1" teaching model with experienced instructors providing comprehensive support throughout the learning process [13] - It emphasizes high academic standards and aims to equip students with a rich set of outputs, including a paper draft and a project completion certificate [13] Section 5: Technical Requirements - Students are expected to have a foundational understanding of deep learning, basic programming skills in Python, and familiarity with PyTorch [11] - Hardware requirements include access to high-performance machines, preferably with multiple GPUs [11] Section 6: Service and Support - The program includes dedicated supervisors to track student progress and provide assistance with academic and non-academic issues [17] - The course will be conducted via Tencent Meeting and recorded for later access [18]
传统的感知被嫌弃,VLA逐渐成为新秀......
自动驾驶之心·2025-07-25 08:17