Core Viewpoint - The article discusses the development of FastDriveVLA, a novel framework for visual token pruning in autonomous driving, achieving a 50% compression rate while maintaining 97.3% performance [2][3][43]. Group 1: End-to-End Autonomous Driving - Recent advancements in end-to-end autonomous driving research have led to the adoption of end-to-end methods that complete perception to planning in a single model, reducing information loss between modules [3]. - The introduction of Visual-Language-Action (VLA) models enhances decision-making in complex scenarios, making them increasingly popular in autonomous driving systems [3][10]. Group 2: Visual Token Pruning - Existing VLM/VLA models encode images into numerous visual tokens, resulting in high computational costs. Current research explores two main directions for visual token pruning: attention mechanism-based methods and similarity-based methods [4][14]. - FastDriveVLA proposes a reconstruction-based visual token pruning framework that focuses on retaining tokens related to foreground information, significantly reducing computational costs while maintaining performance [5][13]. Group 3: FastDriveVLA Framework - FastDriveVLA includes a plug-and-play pruner called ReconPruner, trained using a pixel reconstruction task to focus on foreground areas and assign higher significance scores to key tokens [6][17]. - The framework utilizes a large-scale dataset, nuScenes-FG, containing 241,000 image-mask pairs for training, enhancing the model's ability to distinguish between foreground and background [6][12]. Group 4: Experimental Results - FastDriveVLA achieved state-of-the-art results on the nuScenes closed-loop planning benchmark, demonstrating its effectiveness and practicality [13][34]. - The framework shows superior performance compared to existing methods, with improvements in L2 error and collision rates at various pruning ratios [30][34]. Group 5: Efficiency Analysis - FastDriveVLA significantly reduces FLOPs by approximately 7.5 times and decreases prefill and decode latencies, enhancing inference efficiency for real-time deployment [36][40]. - The lightweight design of ReconPruner allows for lower CUDA latency compared to several similar methods, making it suitable for practical applications [36][40].
面向量产VLA方案!FastDriveVLA:即插即用剪枝模块,推理加速近4倍(北大&小鹏)
自动驾驶之心·2025-08-04 23:33