Workflow
大模型究竟是个啥?都有哪些技术领域,面向小白的深度好文!
自动驾驶之心·2025-08-05 23:32

Core Insights - The article provides a comprehensive overview of large language models (LLMs), their definitions, architectures, capabilities, and notable developments in the field [3][6][12]. Group 1: Definition and Characteristics of LLMs - Large Language Models (LLMs) are deep learning models trained on vast amounts of text data, capable of understanding and generating natural language [3][6]. - Key features of modern LLMs include large-scale parameters (e.g., GPT-3 with 175 billion parameters), Transformer architecture, pre-training followed by fine-tuning, and multi-task adaptability [6][12]. Group 2: LLM Development and Architecture - The Transformer architecture, introduced by Google in 2017, is the foundational technology for LLMs, consisting of an encoder and decoder [9]. - Encoder-only architectures, like BERT, excel in text understanding tasks, while decoder-only architectures, such as GPT, are optimized for text generation [10][11]. Group 3: Core Capabilities of LLMs - LLMs can generate coherent text, assist in coding, answer factual questions, and perform multi-step reasoning [12][13]. - They also excel in text understanding and conversion tasks, such as summarization and sentiment analysis [13]. Group 4: Notable LLMs and Their Features - The GPT series by OpenAI is a key player in LLM development, known for its strong general capabilities and continuous innovation [15][16]. - Meta's Llama series emphasizes open-source development and multi-modal capabilities, significantly impacting the AI community [17][18]. - Alibaba's Qwen series focuses on comprehensive open-source models with strong support for Chinese and multi-language tasks [18]. Group 5: Visual Foundation Models - Visual Foundation Models are essential for processing visual inputs, enabling the connection between visual data and LLMs [25]. - They utilize architectures like Vision Transformers (ViT) and hybrid models combining CNNs and Transformers for various tasks, including image classification and cross-modal understanding [26][27]. Group 6: Speech Large Models - Speech large models are designed to handle various speech-related tasks, leveraging large-scale speech data for training [31]. - They primarily use Transformer architectures to capture long-range dependencies in speech data, facilitating tasks like speech recognition and translation [32][36]. Group 7: Multi-Modal Large Models (MLLMs) - Multi-modal large models can process and understand multiple types of data, such as text, images, and audio, enabling complex interactions [39]. - Their architecture typically includes pre-trained modal encoders, a large language model, and a modal decoder for generating outputs [40]. Group 8: Reasoning Large Models - Reasoning large models enhance the reasoning capabilities of LLMs through optimized prompting and external knowledge integration [43][44]. - They focus on improving the accuracy and controllability of complex tasks without fundamentally altering the model structure [45].