Workflow
从Debugger到Developer : 低代码时代新基准NoCode-bench,SWE-Bench作者力荐
机器之心·2025-08-08 07:53

Core Insights - The article discusses the introduction of a new benchmark called NoCode-bench, aimed at evaluating the capabilities of large language models (LLMs) in natural language-driven feature addition tasks in software development [3][27]. - Current LLMs show a low success rate of only 20% in performing these tasks, highlighting significant challenges in AI's ability to handle real-world software development scenarios [3][26]. Group 1: Benchmark Development - NoCode-bench was developed to address the limitations of existing benchmarks like SWE-bench, which primarily focus on bug fixing rather than feature addition [6][27]. - The benchmark emphasizes the importance of understanding software documentation changes to implement new features, reflecting a more realistic development environment [6][27]. - The construction of NoCode-bench involved a rigorous five-phase process, starting from selecting well-maintained open-source projects to filtering instances based on developer-verified release notes [8][10][16]. Group 2: Challenges Identified - The tasks in NoCode-bench present three main challenges: 1. Increased complexity of input, with document changes being nearly twice as long as bug reports, requiring better long-text comprehension [12]. 2. Difficulty in locating changes, as tasks often involve multiple files and code blocks, demanding high cross-file editing capabilities [13]. 3. Greater editing volume, with nearly 20% of tasks requiring modifications of over 200 lines of code, increasing the risk of errors [14]. Group 3: Model Performance Evaluation - A comprehensive evaluation of six leading LLMs, including Claude-4-Sonnet and GPT-4o, revealed disappointing success rates, with the best-performing model achieving only 15.79% success [18][26]. - The analysis of failure cases identified three primary reasons for poor performance: lack of cross-file editing ability, insufficient understanding of codebase structure, and inadequate tool invocation capabilities [20][21][22]. Group 4: Future Directions - The research indicates that the current state of LLMs is not ready for the complexities of document-driven feature development, suggesting a need for further advancements in AI capabilities [24][27]. - The findings provide a roadmap for future AI software engineers, focusing on improving cross-file editing, codebase comprehension, and tool interaction [27].