Core Viewpoint - The article emphasizes the increasing investment in automatic labeling by autonomous driving companies, highlighting the challenges and complexities involved in 4D automatic labeling, which integrates 3D spatial data with temporal dimensions [1][2]. Group 1: Challenges in Automatic Labeling - The main difficulties in 4D automatic labeling include high requirements for temporal consistency, complex multi-modal data fusion, challenges in generalizing dynamic scenes, conflicts between labeling efficiency and cost, and high demands for scene generalization in mass production [2][3]. Group 2: Course Overview - The course offers a comprehensive tutorial on the entire process of 4D automatic labeling, covering core algorithms and practical applications, aimed at enhancing algorithmic capabilities through real-world examples [2][3][4]. - Key topics include dynamic obstacle detection, SLAM reconstruction principles, static element labeling based on reconstruction graphs, and the mainstream paradigms of end-to-end labeling [3][4][5][6]. Group 3: Detailed Course Structure - Chapter 1 introduces the basics of 4D automatic labeling, its applications, required data, and algorithms involved, focusing on system time-space synchronization and sensor calibration [4]. - Chapter 2 delves into the process of dynamic obstacle labeling, covering offline 3D target detection algorithms and practical solutions to common engineering challenges [6]. - Chapter 3 focuses on laser and visual SLAM reconstruction, discussing its importance and the basic modules of reconstruction algorithms [7]. - Chapter 4 addresses the automation of static element labeling, emphasizing the need for accurate detection and tracking [9]. - Chapter 5 centers on the OCC labeling of general obstacles, detailing the input-output requirements and the processes for generating ground truth [10]. - Chapter 6 is dedicated to end-to-end ground truth generation, integrating various elements into a cohesive process [12]. - Chapter 7 discusses the data closed-loop topic, sharing insights on industry pain points and interview preparation for relevant positions [14]. Group 4: Target Audience and Course Benefits - The course is designed for researchers, students, and professionals looking to deepen their understanding of 4D automatic labeling and enhance their algorithm development capabilities [19][23]. - Participants will gain practical skills in 4D automatic labeling, including knowledge of cutting-edge algorithms and the ability to solve real-world problems [19].
正式结课!动静态/OCC/端到端自动标注一网打尽
自动驾驶之心·2025-08-25 03:15