Core Viewpoint - The article emphasizes the increasing investment in automated labeling by autonomous driving companies, highlighting the challenges and requirements for end-to-end automated labeling in the context of intelligent driving [1][2]. Group 1: Challenges in Automated Labeling - The main challenges in 4D automated labeling include high spatial-temporal consistency requirements, complex multi-modal data fusion, difficulties in generalizing dynamic scenes, contradictions between labeling efficiency and cost, and high requirements for scene generalization in mass production [2][3]. Group 2: Course Overview - The course offers a comprehensive tutorial on the entire process of 4D automated labeling, covering dynamic obstacle detection, SLAM reconstruction, static element labeling, and end-to-end truth generation [3][4][6]. - It includes practical exercises to enhance algorithm capabilities and addresses real-world engineering challenges [2][3]. Group 3: Detailed Course Structure - Chapter 1 introduces the basics of 4D automated labeling, its applications, and the necessary data and algorithms [4]. - Chapter 2 focuses on the process of dynamic obstacle labeling, including offline 3D target detection algorithms and solutions to common engineering issues [6]. - Chapter 3 discusses laser and visual SLAM reconstruction, explaining its importance and common algorithms [7]. - Chapter 4 addresses static element labeling based on reconstruction outputs [9]. - Chapter 5 covers the general obstacle OCC labeling, detailing the input-output requirements and optimization techniques [10]. - Chapter 6 is dedicated to end-to-end truth generation, integrating various elements into a cohesive process [12]. - Chapter 7 provides insights into data scaling laws, industry pain points, and interview preparation for relevant positions [14]. Group 4: Target Audience and Prerequisites - The course is suitable for researchers, students, and professionals looking to transition into the data closure field, requiring a foundational understanding of deep learning and autonomous driving perception algorithms [19][23].
没有数据闭环的端到端只是半成品!
自动驾驶之心·2025-08-31 23:33