Workflow
从传统融合迈向端到端融合,多模态感知的出路在哪里?
自动驾驶之心·2025-09-04 11:54

Core Insights - The article emphasizes the importance of multi-modal sensor fusion technology in overcoming the limitations of single sensors for robust perception in autonomous driving systems [1][4][33] - It highlights the evolution from traditional fusion methods to advanced end-to-end fusion based on Transformer architecture, which enhances the efficiency and robustness of feature interaction [2][4] Group 1: Multi-Modal Sensor Fusion - Multi-modal sensor fusion combines the strengths of LiDAR, millimeter-wave radar, and cameras to achieve reliable perception in all weather conditions [1][4] - The current mainstream approaches include mid-term fusion based on Bird's-Eye View (BEV) and end-to-end fusion using Transformer architecture, significantly improving the safety of autonomous driving systems [2][4][33] Group 2: Challenges in Sensor Fusion - Key challenges include sensor calibration to ensure high-precision spatial and temporal alignment, as well as data synchronization to address inconsistencies in sensor frame rates [3][4] - The design of more efficient and robust fusion algorithms to effectively utilize and process the heterogeneity and redundancy of different sensor data is a core research direction for the future [3] Group 3: Course Outline and Objectives - The course aims to provide a comprehensive understanding of multi-modal fusion technology, covering classic and cutting-edge papers, implementation codes, and research methodologies [4][10][12] - It includes a structured 12-week online group research program, followed by 2 weeks of paper guidance and 10 weeks of paper maintenance, focusing on practical skills in research and writing [4][12][15]