Core Viewpoint - The article discusses the development of the LLaDA-MoE model, the first native MoE architecture diffusion language model trained from scratch, which demonstrates significant performance and efficiency advantages over traditional autoregressive models [2][15][18]. Group 1: Model Development and Performance - The LLaDA-MoE model was trained on 20 terabytes of data and features 1.4 billion active parameters, achieving performance comparable to denser autoregressive models like Qwen2.5-3B while maintaining faster inference speeds [15][17][29]. - The LLaDA series has rapidly evolved, with LLaDA-MoE being a notable milestone, surpassing previous models like LLaDA1.0/1.5 and Dream-7B in various benchmark tests [13][18][29]. - The model's architecture allows for significant scaling potential, with plans to explore higher sparsity ratios and larger MoE diffusion language models [29][40]. Group 2: Technical Innovations and Advantages - The diffusion model approach allows for parallel decoding, bidirectional modeling, and iterative correction, addressing limitations of autoregressive models such as serial bottlenecks and lack of error correction capabilities [38][40]. - Evidence suggests that diffusion language models can achieve better learning outcomes than autoregressive models, particularly in scenarios with limited data, demonstrating a data utilization efficiency that can exceed three times that of autoregressive models [40][41]. - The training framework and infrastructure developed by Ant Group, including the ATorch framework, supports the efficient training of large-scale MoE models [25][26]. Group 3: Strategic Vision and Future Directions - The development of LLaDA-MoE reflects a strategic choice to explore high-potential areas in AI, moving beyond established paths to enhance the limits of intelligence [44][47]. - Ant Group's commitment to innovation is evident in its previous projects and ongoing research in areas like dynamic MoE architectures and hybrid linear architectures, all aimed at achieving general artificial intelligence (AGI) [45][46][47].
扩散语言模型也有MoE版本了!蚂蚁&人大从头训练LLaDA-MoE,即将完全开源
机器之心·2025-09-12 11:31