Core Viewpoint - The article discusses the current state and future prospects of end-to-end autonomous driving, emphasizing the concept of a "World Engine" to address challenges in the field [2][21]. Definition of End-to-End Autonomous Driving - End-to-end autonomous driving is defined as "learning a single model that directly maps raw sensor inputs to driving scenarios and outputs control commands," replacing traditional modular pipelines with a unified function [3][6]. Development Roadmap of End-to-End Autonomous Driving - The evolution of end-to-end autonomous driving has progressed from simple black-and-white image inputs over 20 years to more complex methods, including conditional imitation learning and modular approaches [8][10]. Current State of End-to-End Autonomous Driving - The industry is currently in the "1.5 generation" phase, focusing on foundational models and addressing long-tail problems, with two main branches: the World Model (WM) and Visual Language Action (VLA) [10][11]. Challenges in Real-World Deployment - Collecting data for all scenarios, especially extreme cases, remains a significant challenge for achieving Level 4 (L4) or Level 5 (L5) autonomous driving [17][18]. Concept of the "World Engine" - The "World Engine" concept aims to learn from human expert driving and generate extreme scenarios for training, which can significantly reduce costs associated with large fleets [21][24]. Data and Algorithm Engines - The "World Engine" consists of a Data Engine for generating extreme scenarios and an Algorithm Engine, which is still under development, to improve and train end-to-end algorithms [24][25].
不管VLA还是WM世界模型,都需要世界引擎
自动驾驶之心·2025-09-13 16:04