Core Viewpoint - The article emphasizes the importance of utilizing open-source large language models (LLMs) and retrieval-augmented generation (RAG) for businesses, particularly for small teams, rather than fine-tuning models without sufficient original data [2][6]. Group 1: Model Utilization Strategies - For small teams, deploying open-source LLMs combined with RAG can cover 99% of needs without the necessity of fine-tuning [2]. - In cases where open-source models perform poorly in niche areas, businesses should first explore RAG and in-context learning before considering fine-tuning specialized models [3]. - The article suggests assigning more complex tasks to higher-tier models (e.g., o1 series for critical tasks and 4o series for moderately complex tasks) [3]. Group 2: Domestic and Cost-Effective Models - The article highlights the potential of domestic large models such as DeepSeek, Doubao, and Qwen as alternatives to paid models [4]. - It also encourages the consideration of open-source models or cost-effective closed-source models for general tasks [5]. Group 3: AI Agent and RAG Technologies - The article introduces the concept of Agentic AI, stating that if existing solutions do not work, training a model may not be effective [6]. - It notes the rising demand for talent skilled in RAG and AI Agent technologies, which are becoming core competencies for AI practitioners [8]. Group 4: Community and Learning Resources - The article promotes a community platform called "大模型之心Tech," which aims to provide a comprehensive space for learning and sharing knowledge about large models [10]. - It outlines various learning pathways for RAG, AI Agents, and multi-modal large model training, catering to different levels of expertise [10][14]. - The community also offers job recommendations and industry opportunities, facilitating connections between job seekers and companies [13][11].
但我还是想说:建议个人和小团队不要碰大模型训练!
自动驾驶之心·2025-09-20 16:03