Core Insights - The article discusses the significant advancements in reinforcement learning (RL) techniques that enhance the capabilities of large language models (LLMs), particularly in understanding human intent and following user instructions [2][3] - A comprehensive survey titled "Reinforcement Learning Meets Large Language Models" has been conducted by researchers from top institutions, summarizing the role of RL throughout the entire lifecycle of LLMs [2][3] Summary by Sections Overview of Reinforcement Learning in LLMs - The survey details the application strategies of RL in various stages of LLMs, including pre-training, alignment fine-tuning, and reinforcement reasoning [3][6] - It organizes existing datasets, evaluation benchmarks, and mainstream open-source tools and training frameworks relevant to RL fine-tuning, providing a clear reference for future research [3][6] Lifecycle of LLMs - The article systematically covers the complete application lifecycle of RL in LLMs, detailing the objectives, methods, and challenges faced at each stage from pre-training to reinforcement [11][12] - A classification overview of the operational methods of RL in LLMs is presented, highlighting the interconnections between different stages [5][6] Focus on Verifiable Rewards - The survey emphasizes the focus on Reinforcement Learning with Verifiable Rewards (RLVR), summarizing its applications in enhancing reasoning stability and accuracy in LLMs [7][9] - It discusses how RLVR optimizes the reasoning process and improves the model's adaptability to complex tasks through automatically verifiable reward mechanisms [7][9] Key Contributions - The article identifies three main contributions: a comprehensive lifecycle overview of RL applications in LLMs, a focus on advanced RLVR techniques, and the integration of key research resources essential for experiments and evaluations [9][11] - It provides valuable references for researchers interested in exploring RL in the context of LLMs [11][12] Challenges and Future Directions - Despite significant progress, challenges remain in scalability and training stability for large-scale RL applications in LLMs, which are still computationally intensive and often unstable [12][13] - Issues related to reward design and credit assignment, particularly in long-term reasoning, pose difficulties for model learning [12][13] - The article highlights the need for standardized datasets and evaluation benchmarks to facilitate comparison and validation of RL fine-tuning methods [12][13]
复旦、同济和港中文等重磅发布:强化学习在大语言模型全周期的全面综述
机器之心·2025-09-30 23:49