传统的感知被嫌弃,VLA逐渐成为新秀...
自动驾驶之心·2025-10-10 23:32

Core Insights - The focus of academia and industry is shifting towards VLA (Vision-Language-Action) for enhancing autonomous driving capabilities, providing human-like reasoning in vehicle decision-making processes [1][4] - Traditional methods in perception and lane detection are becoming mature, leading to a decline in interest, while VLA is seen as a critical area for development by major players in the autonomous driving sector [4][6] - A comprehensive learning roadmap for VLA has been designed, covering foundational principles to practical applications [6] Summary by Sections Course Overview - The course titled "Autonomous Driving VLA and Large Model Practical Course" aims to deepen understanding of VLA through detailed explanations of cutting-edge algorithms and practical assignments [6][22] Chapter 1: Introduction to VLA Algorithms - This chapter provides a conceptual overview of VLA algorithms, their historical development, and introduces open-source benchmarks and evaluation metrics relevant to VLA [13] Chapter 2: Algorithm Fundamentals of VLA - Focuses on foundational knowledge in Vision, Language, and Action modules, and includes a section on deploying and using popular open-source large models [14] Chapter 3: VLM as an Autonomous Driving Interpreter - Discusses the role of VLM (Vision-Language Model) in scene understanding prior to the introduction of VLA, covering classic and recent algorithms such as DriveGPT4 and TS-VLM [15] Chapter 4: Modular and Integrated VLA - Explores the evolution of language models from passive descriptions to active planning components, detailing modular and integrated VLA approaches, and includes practical coding exercises [16] Chapter 5: Reasoning-Enhanced VLA - Concentrates on the reasoning-enhanced VLA subfield, introducing new reasoning modules and discussing various algorithms and their applications in autonomous driving [17][19] Chapter 6: Major Project - The final chapter emphasizes hands-on practice, guiding participants through network construction, dataset customization, and model training using the ms-swift framework [20] Learning Requirements and Outcomes - Participants are expected to have a foundational understanding of autonomous driving, large models, and relevant mathematical concepts, with the course designed to equip them with the ability to understand and apply VLA algorithms in practical scenarios [24]