Core Insights - The article discusses the significant advancements in the AI field over the past three years, primarily driven by the development of foundational models, which require substantial data, computational power, and human resources [2][4]. Resource Allocation and Research Impact - The relationship between hardware resources and the publication of top-tier AI/ML conference papers has been analyzed, focusing on GPU availability and TFLOPs [4][5]. - A total of 5,889 foundational model-related papers were identified, revealing that stronger GPU acquisition capabilities correlate with higher acceptance rates and citation counts in eight leading conferences [5][9]. Research Methodology - The study collected structured information from 34,828 accepted papers between 2022 and 2024, identifying 5,889 related to foundational models through keyword searches [8][11]. - A survey of 229 authors from 312 papers indicated a lack of transparency in GPU usage reporting, highlighting the need for standardized resource disclosure [9][11]. Growth of Foundational Model Research - From 2022 to 2024, foundational model research has seen explosive growth, with the proportion of related papers in top AI conferences rising significantly [18][19]. - In NLP conferences, foundational model papers have outpaced those in general machine learning conferences [22]. Research Contributions by Academia and Industry - Academic institutions contributed more papers overall, while top industrial labs excelled in single-institution output, with Google and Microsoft leading in paper production [29][32]. - The research efficiency between academia and industry is comparable, with industry researchers publishing an average of 8.72 papers and academia 7.93 papers [31]. Open Source Models and GPU Usage - Open-source models, particularly the LLaMA series, have become the predominant choice in research, favored for their flexibility and accessibility [35][37]. - NVIDIA A100 is the most widely used GPU in foundational model research, with a notable concentration of GPU resources among a few institutions [38][39]. Funding Sources and Research Focus - Government funding is the primary source for foundational model research, with 85.5% of papers receiving government support [41][42]. - The focus of research has shifted towards algorithm development and inference processes, with a significant portion of papers dedicated to these areas [42]. Computational Resources and Research Output - The total computational power measured in TFLOPs is more strongly correlated with research output and citation impact than the sheer number of GPUs used [44][45]. - While more resources can improve acceptance rates, the quality of research and its novelty remain critical factors in the review process [47].
实锤了:GPU越多,论文接收率越高、引用越多
机器之心·2025-10-17 08:12