无需再训练即可增强性能!港大团队提出GPC框架,实现机器人「策略组合」
机器之心·2025-10-19 09:17

Core Viewpoint - The article introduces the General Policy Composition (GPC) framework, which provides a novel, training-free solution to enhance the performance of robot control strategies by dynamically combining multiple pre-trained models during test time, thus overcoming the limitations of traditional training methods [2][5][7]. Summary by Sections Improving Policy Performance - GPC presents a paradigm shift in enhancing policy performance without relying on additional training, instead utilizing a method of combining existing strategies [6][15]. Innovative Theoretical Foundation - The framework is built on two key theoretical findings: 1. Functional-Level Improvement, which shows that convex combinations of decision scores from multiple pre-trained strategies can yield a more accurate combined score than any single strategy [9]. 2. System-Level Stability, which ensures that improvements in single-step errors propagate throughout the entire trajectory, leading to overall performance enhancement [10]. General "Policy Composer" - GPC's core advantage lies in its plug-and-play nature, allowing for the seamless integration of various robot strategies without the need for retraining [14][15]. Heterogeneous Strategy Flexibility - GPC can flexibly combine strategies across different architectures and modalities, effectively balancing information from various conditions to produce stable and coherent action trajectories [17][19]. Weight Search for Optimal Strategy - The weight search mechanism in GPC customizes optimal weight configurations for different tasks, emphasizing the importance of weight distribution in maximizing the effectiveness of the combined strategy [22][23]. Experimental Validation - GPC has demonstrated superior performance in both simulation and real-world environments, achieving significant success rate improvements over single baseline methods, with up to 7.55% in simulation tasks and 5-10% in real-world tasks [28][30]. Key Findings from Experiments - Three core findings from experiments highlight GPC's versatility: 1. GPC can achieve higher accuracy when combining strategies with moderate accuracy levels [29]. 2. The presence of a weak strategy can hinder overall performance, indicating the need for careful selection of contributing strategies [29]. 3. Performance is maximized when stronger strategies are given greater weight in the combination [29].