Workflow
具有超导性能的锗材料制成
财联社·2025-11-03 00:19

Core Viewpoint - An international research team has developed superconducting germanium materials that can conduct electricity without resistance, paving the way for scalable quantum devices based on existing semiconductor technology [1][2]. Group 1: Breakthrough in Superconductivity - The research achieved superconductivity in germanium, a significant advancement as traditional semiconductors like silicon and germanium have struggled to exhibit superconducting properties [1][2]. - The breakthrough was accomplished through molecular beam epitaxy, allowing precise doping of gallium atoms into the germanium lattice, resulting in a highly ordered crystal structure [1][2]. Group 2: Implications for Technology - The ability to induce superconductivity in germanium opens new possibilities for next-generation quantum circuits, low-power low-temperature electronic devices, and high-sensitivity sensors [2]. - The research emphasizes the importance of creating clean interfaces between superconducting and semiconductor regions, which is crucial for integrating quantum technologies [2]. - Given that germanium is already widely used in advanced chip manufacturing, this technology is expected to be compatible with existing foundry processes, accelerating the practical application of quantum technology [2].