Core Insights - The article discusses the rapid advancements in diffusion large language models (LLMs), highlighting their potential as strong competitors to traditional LLMs [2][7] - A recent paper from a collaborative research team proposes an efficient decoding strategy combined with reinforcement learning for masked diffusion large language models (MDLM), significantly improving their reasoning performance and efficiency [2][21] Group 1: Problem Identification - Masked diffusion large language models like LLaDA exhibit capabilities comparable to autoregressive models but face challenges with full diffusion-style decoding, which is less effective than block-wise decoding [7][9] - The decoding process of MDLMs often encounters an issue where early generation of tokens leads to performance degradation, creating a decoding trap [14][15] Group 2: Proposed Solutions - The research team introduces an early rejection mechanism for tokens to suppress their confidence during early decoding steps, thus preventing premature termination of generation [15] - A power-increasing decoding step scheduler is designed to optimize the decoding process, reducing the inference steps from O(L) to O(logL), thereby accelerating reasoning [15][16] Group 3: Consistency Trajectory Optimization - The team proposes a consistency trajectory grouping strategy (CJ-GRPO) to address inconsistencies between rollout and optimization trajectories, enhancing training stability and effectiveness [16] - By combining the early rejection mechanism, increasing step scheduler, and CJ-GRPO, the model can maintain performance comparable to baseline methods while significantly reducing decoding steps [16][24] Group 4: Experimental Results - Extensive experiments demonstrate that the proposed methods outperform baseline models in mathematical reasoning and planning tasks, with performance improvements of up to 2-4 times in certain benchmarks [23][24] - The results indicate that the combination of CJ-GRPO with EOSER and ASS maintains competitive performance in low-step inference scenarios, achieving a balance of speed and quality [24] Group 5: Future Directions - The article suggests exploring hybrid reasoning modes that combine the strengths of diffusion and autoregressive models to meet diverse task requirements [26]