端到端VLA剩下的论文窗口期没多久了......
自动驾驶之心·2025-11-11 00:00

Core Viewpoint - The article discusses the evolution of autonomous driving technology, highlighting the transition from rule-based systems to end-to-end models represented by companies like Ideal and Xpeng, and currently to the world model phase represented by NIO, emphasizing the continuous presence of deep learning throughout these changes [1]. Group 1: Course Introduction - The course covers the development from modular production algorithms to end-to-end systems and now to VLA, focusing on core algorithms such as BEV perception, visual language models (VLM), diffusion models, reinforcement learning, and world models [5]. - Participants will gain a comprehensive understanding of the end-to-end technical framework and key technologies, enabling them to reproduce mainstream algorithm frameworks like diffusion models and VLA, and apply their knowledge to projects [5]. Group 2: Instructor Background - The course is led by Jason, an expert in algorithms from a top domestic manufacturer, with a strong academic background including a C9 undergraduate degree and a PhD from a QS top 50 institution, along with multiple published papers [6]. Group 3: Student Feedback and Outcomes - Feedback indicates that students completing the course can achieve a level equivalent to one year of experience as an end-to-end autonomous driving algorithm engineer, benefiting from the training for internships and job recruitment [5]. Group 4: Research Guidance - The program offers a structured approach to research, guiding students through topic selection, literature review, methodology development, and paper writing, with a high success rate in publication [11][15]. - The service includes personalized matching with experienced mentors based on research direction and goals, ensuring a tailored learning experience [18]. Group 5: Additional Opportunities - Outstanding students may receive recommendation letters from prestigious institutions and direct referrals to research positions in leading companies like Alibaba and Huawei [19].