博世最新一篇长达41页的自动驾驶轨迹规划综述
自动驾驶之心·2025-12-05 00:03

Core Insights - The article discusses the advancements and applications of foundation models (FMs) in trajectory planning for autonomous driving, highlighting their potential to enhance understanding and decision-making in complex driving scenarios [4][5][11]. Background Overview - Foundation models are large-scale models that learn representations from vast amounts of data, applicable to various downstream tasks, including language and vision [4]. - The study emphasizes the importance of FMs in the autonomous driving sector, particularly in trajectory planning, which is deemed the core task of driving [8][11]. Research Contributions - A classification system for methods utilizing FMs in autonomous driving trajectory planning is proposed, analyzing 37 existing methods to provide a structured understanding of the field [11][12]. - The research evaluates the performance of these methods in terms of code and data openness, offering practical references for reproducibility and reusability [12]. Methodological Insights - The article categorizes methods into two main types: FMs customized for trajectory planning and FMs that guide trajectory planning [16][19]. - Customized FMs leverage pre-trained models, adapting them for specific driving tasks, while guiding FMs enhance existing trajectory planning models through knowledge transfer [19][20]. Application of Foundation Models - FMs can enhance trajectory planning capabilities through various approaches, including fine-tuning existing models, utilizing chain-of-thought reasoning, and enabling language and action interactions [9][19]. - The study identifies 22 methods focused on customizing FMs for trajectory planning, detailing their functionalities and the importance of prompt design in model performance [20][32]. Challenges and Future Directions - The article outlines key challenges in deploying FMs in autonomous driving, such as reasoning costs, model size, and the need for suitable datasets for fine-tuning [5][12]. - Future research directions include addressing the efficiency, robustness, and transferability of models from simulation to real-world applications [12][14]. Comparative Analysis - The study contrasts its findings with existing literature, noting that while previous reviews cover various aspects of autonomous driving, this research specifically focuses on the application of FMs in trajectory planning [13][14]. Data and Model Design - The article discusses the importance of data curation for training FMs, emphasizing the need for structured datasets that include sensor data and trajectory pairs [24][28]. - It also highlights different model design strategies, including the use of existing visual language models and the combination of visual encoders with large language models [27][29]. Language and Action Interaction - The research explores models that incorporate language interaction capabilities, detailing how these models utilize visual question-answering datasets to enhance driving performance [38][39]. - It emphasizes the significance of training datasets and evaluation metrics in assessing the effectiveness of language interaction in trajectory planning [39][41].