全球强化学习+VLA范式,PI*0.6背后都有这家中国公司技术伏笔
机器之心·2025-12-12 03:41

Core Insights - The article discusses the significance of integrating Vision-Language-Action (VLA) models with Reinforcement Learning (RL) in the field of Embodied AI, emphasizing the limitations of imitation learning and the necessity for robust learning methods [1][2][4]. Group 1: Importance of VLA+RL - VLA models are being developed to apply powerful Vision-Language Models (VLM) in the control of robots, primarily through supervised fine-tuning (SFT) [2]. - Imitation learning alone is insufficient for robots to handle novel situations, necessitating the use of RL to enhance robustness and persistence in task execution [4]. Group 2: Challenges in Applying RL to VLA - The integration of RL with VLA faces three main challenges: environmental differences, model instability, and computational demands [6]. - Direct application of RL algorithms to large VLA models can lead to catastrophic forgetting and training collapse, making it difficult to maintain performance [6]. Group 3: Solutions to VLA's RL Challenges - The industry has proposed three types of solutions to address the challenges faced by VLA in RL applications, with a focus on internalizing high-value behaviors through SFT [7][13]. - The iRe-VLA model introduces a two-phase iterative learning process that alternates between online RL for exploration and supervised learning for consolidation [10][15]. Group 4: iRe-VLA Model Architecture - The iRe-VLA model consists of a VLM backbone for understanding images and instructions, and an Action Head for translating features into control signals [11]. - The use of Low-Rank Adaptation (LoRA) technology allows for efficient training without the need for full model fine-tuning [12]. Group 5: Experimental Results and Analysis - Extensive experiments in both simulated environments and real-world scenarios demonstrate the effectiveness of the iRe-VLA method, showing significant improvements in task success rates [26][30]. - The iRe-VLA model outperformed traditional methods, achieving a success rate increase from 43% to 83% in benchmark tasks [30]. Group 6: Conclusion and Future Implications - The article concludes that the iRe-VLA approach provides a viable solution to the challenges of deploying large models in robotic control, ensuring stability and continuous learning [37][42]. - Future research directions include efficient exploration and learning of new skills under sparse rewards, as well as developing scalable RL algorithms for large VLA models [40].

全球强化学习+VLA范式,PI*0.6背后都有这家中国公司技术伏笔 - Reportify