Core Viewpoint - The article emphasizes the critical role of heat dissipation technology in high-power and high-density electronic devices, highlighting the emergence of diamond-copper composite materials as a key solution to overcome traditional thermal management limitations [1][3]. Group 1: Heat Dissipation Technology's Core Position - Heat dissipation systems have evolved from being performance optimization items to core constraints on product performance, driven by exponential increases in heat flow density [4][11]. - Traditional thermal management solutions, such as heat pipes, face significant limitations as heat flow density exceeds 300W/cm², necessitating breakthroughs in high-performance composite materials [4][11]. Group 2: Performance Parameters and Economic Implications - The performance of heat pipes is often overstated, with real-world applications revealing a significant gap between theoretical and practical performance, presenting opportunities for new materials [7]. - The economic implications of heat dissipation are stark, with data indicating that a 10°C increase in temperature can lead to a 50% decrease in reliability, and that 40% of energy consumption in AI centers is dedicated to heat dissipation [13]. Group 3: Diamond-Copper Composite Materials - Diamond-copper composite materials are characterized by their exceptional thermal conductivity and adaptability, achieved through microstructural design that combines the high thermal conductivity of diamond with the workability of copper [18][22]. - The thermal conductivity of diamond can reach 2200 W/m·K, significantly surpassing that of copper, and the composite can achieve thermal conductivities exceeding 1000 W/m·K [22]. Group 4: Market Size and Growth Trends - The global market for diamond-copper composites is projected to grow from approximately $1.4 billion in 2024 to over $3.85 billion by 2031, with a compound annual growth rate (CAGR) of 12.4% [37]. - The Chinese market is expected to expand from 12.8 billion yuan in 2024 to 50 billion yuan by 2031, driven by domestic substitution and the expansion of application scenarios [37][38]. Group 5: Competitive Landscape - The competitive landscape is characterized by international giants dominating high-end markets while domestic companies accelerate local substitution, with Japan's Sumitomo Electric holding a significant market share [45]. - Chinese manufacturers are making strides in the diamond-copper sector, achieving thermal conductivities of 600-800 W/(m·K) and reducing costs by 30%-40% compared to imports [45]. Group 6: Future Development Trends - Future advancements in the diamond-copper sector will likely stem from technological breakthroughs and the expansion of application scenarios, with a focus on high-performance and extreme environment stability [53]. - The industry is expected to mature through the standardization of processes and the localization of equipment, which are essential for large-scale commercialization [53].
破解“散热天花板”:金刚石铜复合材料的百亿征程(附分析报告)