端到端落地中可以参考的七个Project
自动驾驶之心·2025-12-19 00:05

Core Viewpoint - The article emphasizes the importance of end-to-end production in autonomous driving technology, highlighting the need for practical experience in various algorithms and applications to address real-world challenges in the industry [2][7]. Course Overview - The course is designed to provide in-depth knowledge on end-to-end production techniques, focusing on key algorithms such as one-stage and two-stage frameworks, reinforcement learning, and trajectory optimization [2][4]. - It includes practical projects that cover the entire process from theory to application, ensuring participants gain hands-on experience [2][12]. Instructor Background - The instructor, Wang Lu, is a top-tier algorithm expert with a strong academic background and extensive experience in developing and implementing advanced algorithms for autonomous driving [3]. Course Structure - The course consists of eight chapters, each focusing on different aspects of end-to-end algorithms, including: 1. Overview of end-to-end tasks and integration of perception and control systems [7]. 2. Two-stage end-to-end algorithm frameworks and their advantages [8]. 3. One-stage end-to-end algorithms with a focus on performance [9]. 4. Application of navigation information in autonomous driving [10]. 5. Introduction to reinforcement learning algorithms and training strategies [11]. 6. Optimization of trajectory outputs using various algorithms [12]. 7. Post-processing strategies for ensuring reliable outputs [13]. 8. Sharing of production experiences and strategies for real-world applications [14]. Target Audience - The course is aimed at advanced learners with a foundational understanding of autonomous driving algorithms, including familiarity with reinforcement learning and diffusion models [15][17].