随到随学!端到端与VLA自动驾驶小班课(视频+答疑)
自动驾驶之心·2026-01-08 05:58

Core Viewpoint - The article discusses an advanced course on end-to-end (E2E) autonomous driving, focusing on the latest technologies such as BEV perception, Visual Language Models (VLM), diffusion models, and reinforcement learning, aimed at equipping participants with cutting-edge skills in the field [1][4][8]. Group 1: Course Structure - The course is divided into several chapters, starting with an introduction to end-to-end algorithms, covering the historical development and advantages of E2E methods over modular approaches [4]. - The second chapter focuses on background knowledge essential for understanding E2E technologies, including VLA, diffusion models, and reinforcement learning, which are crucial for job interviews in the next two years [5][9]. - The third chapter delves into two-stage E2E methods, discussing their emergence, advantages, and notable algorithms like PLUTO and CarPlanner [5][6]. - The fourth chapter highlights one-stage E2E methods and VLA, exploring various subfields and their contributions to achieving the ultimate goals of E2E systems [6][10]. Group 2: Practical Application - The course includes a major project on RLHF fine-tuning, allowing participants to apply their knowledge in practical scenarios, including building pre-training and reinforcement learning modules [7]. - The course aims to help participants reach a level equivalent to one year of experience as an E2E autonomous driving algorithm engineer, covering various methodologies and key technologies [13]. Group 3: Target Audience and Requirements - The course is designed for individuals with a foundational understanding of autonomous driving, familiar with basic modules, and concepts like transformer models, reinforcement learning, and BEV perception [11]. - Participants are expected to have a background in probability theory and linear algebra, as well as proficiency in Python and PyTorch [11].

随到随学!端到端与VLA自动驾驶小班课(视频+答疑) - Reportify