Workflow
语言模型(LLM)
icon
Search documents
一个极具争议的开源项目,「微信克隆人」火了!
菜鸟教程· 2025-05-15 08:33
以下文章来源于JackCui ,作者JackCui JackCui . 一名热爱技术的算法工程师。分享技术,乐享生活:技术、快乐、财富。 你的微信里有没有一个对话窗?它很久都没有弹出新消息,但你却常常在深夜里点开反反复复地翻着。 如果现在,你可以用这些聊天记录克隆出对方的"数字分身",保存下 TA 说话的语气、风格、独特的口 头禅,甚至还能给你发来语音,你会怎么选? 最近,GitHub 上新开源了一个项目 WeClone——让你记忆里的那个 TA 在数字世界里永生,已不再是不 可能。 WeClone 通过个人微信聊天记录对大语言模型( LLM )进行微调,打造个性化的数字分身。 除了留住记忆里的 TA,你也可以创造自己的数字分身。 你有没有想过,和自己聊天会是什么样的体 验?你会喜欢和自己聊天吗? | O | 17 | 0 | ılıl 1.9K | W | T | | --- | --- | --- | --- | --- | --- | | | Vic Huang @bugauwIQtoa5ftS · Apr 11 | | | C | ... | | 数字永生 | | | | | | | 0 | 5 | ...
AI也需要"记笔记":Karpathy从Claude 1.6万字提示词中看到的未来
歸藏的AI工具箱· 2025-05-12 08:28
LLM 的系统提示就是在对话一开始递给 AI 的"一页说明书",用来告诉它该扮演什么角色、遵守哪 些规则、用什么方式回答用户。 大概来看一下这么长的提示词里面主要都是一些什么内容: 而且整个提示词中充满了临时修改的的痕迹,这些修改往往没有使用 XML 或者 Markdown 格式的列表,就 是一段话,看起来像是针对一些热点事件或者问题修复打的补丁。 **Acknowledgments** I would like to thank my supervisor, for his kind of support. I would like to thank my supervisor, for his kind of support. 如果懒得看内容可以听一下,播客使用 listenhub 制作 前几天 Cluade 新的系统提示词泄露了,居然有 16,739 个单词,非常长。 相比之下,OpenAI 在 ChatGPT 中的 o4-mini 的系统提示有 2,218 个单词,只是 Claude 的 13%。 什么是系统提示词 Claude 整个系统提示词这么长维护和更新甚至版本控制应该都需要一个专门的流程,不然 ...
马来西亚,下一个全球数据中心霸主?
财富FORTUNE· 2025-05-09 13:03
马来西亚柔佛州即将建成的"探索新城"办公楼的内部设计效果图。图片来源:Courtesy of ZA 19世纪40年代,新加坡的华人先民横渡柔佛海峡(Johor Strait),在马来西亚柔佛州的原始丛林中披荆 斩棘,建立起绵延不绝的黑胡椒种植园。20世纪的英国殖民时期,这些胡椒农场逐渐被广袤的橡胶林与 油棕榈园所取代。如今,在同一片土地上,柔佛州正在悉心培育数字时代的新型经济作物——为缓解全 球算力饥渴而建设的人工智能数据中心群。 柔佛的数据中心建设狂潮,与当年改种胡椒的产业转型如出一辙,根源都在新加坡的资源瓶颈。这个城 邦国家虽然贵为东南亚的数字中枢,却连水电供给都依赖进口。2019年,因为庞然巨物般的数据中心不 仅消耗大量水资源,更消耗了新加坡7%的电力,政府不得不叫停新建项目。投资方与运营商旋即跨海 而来,在土地成本优势显著、能源供给充沛,以及矢志助推数字经济发展的马来西亚落子布局。 而柔佛跻身数据中心重镇的另一关键推力,在于全球算力争夺战的白热化。尽管新加坡在2022年1月已 经放开数据中心禁令,但岁末ChatGPT的震撼问世引爆全球人工智能基础设施需求,也在马来西亚掀起 新一轮的投资狂潮。房地产咨询 ...
仅需1个数据,就能让大模型的数学推理性能大大增强?
机器之心· 2025-05-09 09:02
论文发现,只在 RLVR 训练中使用一个训练数据(称作 1-shot RLVR),就可以在 MATH500 上,将 Qwen2.5-Math-1.5B 的表现从 36.0% 提升到 73.6%,以及把 Qwen2.5-Math-7B 的表现从 51.0% 提升到 79.2% 。 这个表现和使用 1.2k 数据集(包括这一个数据)的 RLVR 效果差不多。 使用两个训练样本的 RLVR 甚至略微超过了使用 1.2k 数据集(称作 DSR-sub)的表现, 和使用 7.5k MATH 训练集的 RLVR 表现相当。这种表现可以在 6 个常用的数学推理任务上都可以观察到。 本文第一作者王宜平是华盛顿大学的博士生,其导师、通讯作者杜少雷为华盛顿大学Assistant Professor;另外两位通讯作者 Yelong Shen 和 Shuohang Wang 是 Microsoft GenAI 的Principal Researcher。 最近, 大型语言模型(LLM)在推理能力方面取得了显著进展,特别是在复杂数学任务上。推动上述进步的关键方法之一就是带可验证奖励的强化学习 (Reinforcement Learni ...
苹果谷歌“闹分手”?iPhone搜索或转投AI,高管揭秘
3 6 Ke· 2025-05-08 23:59
此案核心争议是两家公司价值约200亿美元(约合人民币1447亿元)/年的协议,该协议让谷歌搜索成为苹果浏览器默认搜索引擎。此案可能迫 使科技巨头解除合作,颠覆iPhone等设备长期以来的运作方式。 01.Safari搜索量首次下滑,AI抢夺传统搜索引擎"蛋糕" 自2007年初代iPhone发布以来,苹果用户始终通过谷歌进行网页搜索,而如今消费者将进入由多家公司AI主导的新时代。 苹果和谷歌要"分手"? 智东西5月8日消息,据知名苹果爆料人、彭博社记者马克·古尔曼(Mark Gurman)最新报道,苹果公司正在"积极考虑"彻底改造其设备上的 Safari网络浏览器,将重点转向AI驱动的搜索引擎。 苹果与谷歌持续二十年战略合作关系似乎出现"裂痕",重大行业变革被按下"加速键"。 本周三,苹果互联网软件和服务部门高级副总裁埃迪·库(Eddy Cue)在美国司法部起诉谷歌母公司Alphabet的案件中作证时披露了这一信息。 埃迪·库提到,Safari搜索量上月首次下滑。他认为这是因为AI工具吸引了部分用户的视线,包括OpenAI、Perplexity AI和Anthropic在内的AI搜 索提供商终将取代Alphab ...
中金 | 大模型系列(2):LLM在个股投研的应用初探
中金点睛· 2025-05-08 23:33
点击小程序查看报告原文 Abstract 摘要 LLM在个股投研的应用:因子挖掘、个股复盘 随着资本市场信息生产机制的加速迭代,上市公司每日披露的公告、舆情、产业链动态等非结构化数据呈现指数级增长。传统人工复盘模式受限于信息处 理效率与认知边界,已难以满足投资者对海量增量信息的实时追踪与价值提炼需求;成熟的基本面选股逻辑如何高效地转化为定量因子也是困扰投资者的 重要问题。本报告提出,通过大语言模型(LLM)技术构建智能化个股复盘框架和基本面因子生成框架,期望通过技术赋能的方式助力投资者实现投研 工作流的提质增效。 主观逻辑因子化和个股复盘或为LLM在个股投研中较好的应用场景。 利用LLM构造基本面选股因子的挖掘框架,可以发挥LLM在推理能力和创造性方面 的优势,提高主观选股逻辑到量化因子的转化效率。利用LLM构建智能化个股复盘体系,可以发挥LLM在处理非结构化数据及观点总结能力方面的优 势,可有效抽取每日关键信息,高效复盘每日最新信息,输出带有一定置信度评估的初步结论,为投资者提供决策参考锚点。 基于LLM的基本面因子挖掘框架:发挥LLM的创造力 关键点:Prompt引导因子创造方向。 在基于LLM的基本面因 ...
AI智能体协议全面综述:从碎片化到互联互通的智能体网络
" 欧米伽未来研究所 " 关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将 不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。( 点击这里查看欧米伽理论 ) 《人工智能智能体协议调研》是上海交通大学杨映璇、柴华灿、宋远逸等学者撰写的一项综合性 研究报告。该报告首次对现有的AI智能体协议进行了全面分析,提出了一个系统的二维分类框 架,区分了面向上下文的协议与智能体间协议,以及通用型与特定领域的协议。 报告指出,随着大型语言模型(LLM)的快速发展,LLM智能体已在客户服务、内容生成、数据分 析和医疗等多个行业广泛部署,但由于缺乏标准化的通信协议,使智能体之间难以有效协作和扩 展,限制了解决复杂问题的能力。 核心内容包括对安全性、可扩展性和延迟性等关键性能维度的比较分析,以及对智能体协议未来 发展趋势的探讨,如分层架构、适应性与进化性、隐私保护与联邦学习和基于群体的交互机制 等。这项研究为研究人员和工程师设计、评估或集成智能体通信基础设施提供了实用参考。 解锁协作的钥匙:不同智能体协议的运作模式探秘 为了更直观地理解AI智能体协议的重要性及其运作方式,我们可以通过一个具体的、与我们 ...
微软正式开源UFO²,Windows桌面迈入「AgentOS 时代」
机器之心· 2025-05-06 08:04
近年来,图形用户界面(GUI)自动化技术正在逐步改变人机交互和办公自动化的生态。然而,以 Robotic Process Automation(RPA)为代表的传统自动化工具通 常依赖固定脚本进行操作,存在界面变化敏感、维护成本高昂、用户体验欠佳等明显问题。 同时,近年来兴起的基于大型语言模型(LLM)的计算机智能体(Computer-Using Agents,CUA)虽然展现出灵活的自动化潜力,但多数方案仍停留在概念验证 或原型阶段,缺乏与操作系统深度集成的能力,制约了其在实际工作环境中的规模化应用。 针对这些行业痛点,作为前代纯 GUI 桌面智能体 UFO 的全面升级版, 微软研究团队近日正式开源了业内首个深度集成 Windows 操作系统的桌面智能体平 台 ——UFO² AgentOS 。 该平台不仅继承了 UFO 的强大 GUI 操作能力,还在系统层面进行了深度优化,显著提升了智能体在 Windows 环境下的操作效率与稳定 性。 本论文第一作者为微软 DKI 团队的 Chaoyun Zhang,其为 Windows 平台首个智能体系统 ——UFO 的核心开发者,该项目已在 GitHub 上开源并获得 ...
GPT-4o医学知识覆盖率仅55%?腾讯优图团队发布大模型医疗能力“体检报告”
量子位· 2025-04-30 04:10
医疗大模型知识覆盖度首次被精准量化! 在医疗领域,大语言模型(LLM)的潜力令人振奋,但其知识储备是否足够可靠?腾讯优图实验室天衍研究中心的最新研究给出了答案。 他们提出的 MedKGEval框架 ,首次通过医疗知识图谱(KG)的多层级评估,系统揭示了GPT-4o等主流模型的医学知识覆盖度。 该研究已被WWW 2025会议Web4Good Track录用为口头报告(oral)。目前,WWW 2025正在悉尼举行,会议时间从4月28日持续至5月2 日。 MedKGEval团队 投稿 量子位 | 公众号 QbitAI 背景 大语言模型(LLM)在医疗领域的快速发展凸显了其知识存储与处理的潜力,但其临床部署前的可靠性验证亟需更系统化的评估框架。 当前主流的Prompt-CBLUE、Medbench和MedJourney等评估体系虽通过医学问答基准测试LLM的任务执行能力,却存在三个明显的局限: 1)其长尾数据分布导致罕见病症覆盖不足,评测结果存在偏差; 2)任务导向的设计聚焦疾病预测、用药咨询等单一场景,难以量化模型内在医学知识储量; 3)传统问答形式局限于表面对错判断,无法捕捉医学概念间的复杂拓扑关联。 为解决这 ...
过去四周,AI推理爆了,GPU在燃烧,英伟达依旧供不应求
Hua Er Jie Jian Wen· 2025-04-27 10:38
Group 1 - Investor sentiment has deteriorated due to macroeconomic and supply chain risks, but demand for NVIDIA's GPUs has surged due to the significant need for inference chips driven by large language models (LLMs) [1] - Token generation has increased over five times since the beginning of the year, creating immense pressure on the ecosystem and driving a surge in investment to handle these workloads [1] - AI companies are experiencing explosive user growth, with many forced to compete for GPU resources to meet the massive demand for inference software [1] Group 2 - Morgan Stanley has lowered its target price for NVIDIA to $160 from $162, reflecting overall valuation declines in the peer group rather than changes in the company's fundamentals [2] - Despite strong demand, supply constraints for NVIDIA's Blackwell chips, particularly the GB200/300 models, are limiting the ability to meet the explosive growth in demand [2][4] - Morgan Stanley has raised its revenue forecast for fiscal year 2026 by 10.7% and adjusted earnings per share up by 11.9%, indicating that these figures may still be conservative [5]